1 / 87

THE MATHEMATICS OF CAUSAL MODELING

THE MATHEMATICS OF CAUSAL MODELING. Judea Pearl Department of Computer Science UCLA. OUTLINE. Modeling: Statistical vs. Causal Causal Models and Identifiability Inference to three types of claims: Effects of potential interventions Claims about attribution (responsibility)

arandad
Download Presentation

THE MATHEMATICS OF CAUSAL MODELING

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. THE MATHEMATICS OF CAUSAL MODELING Judea Pearl Department of Computer Science UCLA

  2. OUTLINE • Modeling: Statistical vs. Causal • Causal Models and Identifiability • Inference to three types of claims: • Effects of potential interventions • Claims about attribution (responsibility) • Claims about direct and indirect effects • Robustness of Causal Claims

  3. TRADITIONAL STATISTICAL INFERENCE PARADIGM P Joint Distribution Q(P) (Aspects of P) Data Inference e.g., Infer whether customers who bought product A would also buy product B. Q = P(B|A)

  4. THE CAUSAL INFERENCE PARADIGM M Data-generating Model Q(M) (Aspects of M) Data Inference Some Q(M) cannot be inferred from P. e.g., Infer whether customers who bought product A would still buy A if we double the price.

  5. Probability and statistics deal with static relations Statistics Probability inferences from passive observations joint distribution Data FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES

  6. FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES Probability and statistics deal with static relations Statistics Probability inferences from passive observations joint distribution Data • Causal analysis deals with changes (dynamics) • i.e. What remains invariant when P changes. • P does not tell us how it ought to change • e.g. Curing symptoms vs. curing diseases • e.g. Analogy: mechanical deformation

  7. Probability and statistics deal with static relations Statistics Probability inferences from passive observations joint distribution Data Causal analysis deals with changes (dynamics) • Effects of • interventions Data Causal Model • Causes of • effects Causal assumptions • Explanations Experiments FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES

  8. Causal and statistical concepts do not mix. CAUSAL Spurious correlation Randomization Confounding / Effect Instrument Holding constant Explanatory variables STATISTICAL Regression Association / Independence “Controlling for” / Conditioning Odd and risk ratios Collapsibility FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES (CONT)

  9. Causal and statistical concepts do not mix. CAUSAL Spurious correlation Randomization Confounding / Effect Instrument Holding constant Explanatory variables STATISTICAL Regression Association / Independence “Controlling for” / Conditioning Odd and risk ratios Collapsibility • No causes in – no causes out (Cartwright, 1989) } statistical assumptions + data causal assumptions  causal conclusions FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES (CONT) • Causal assumptions cannot be expressed in the mathematical language of standard statistics.

  10. Causal and statistical concepts do not mix. CAUSAL Spurious correlation Randomization Confounding / Effect Instrument Holding constant Explanatory variables STATISTICAL Regression Association / Independence “Controlling for” / Conditioning Odd and risk ratios Collapsibility • No causes in – no causes out (Cartwright, 1989) } statistical assumptions + data causal assumptions  causal conclusions FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES (CONT) • Causal assumptions cannot be expressed in the mathematical language of standard statistics. • Non-standard mathematics: • Structural equation models (SEM) • Counterfactuals (Neyman-Rubin) • Causal Diagrams (Wright, 1920)

  11. WHAT'SIN A CAUSAL MODEL? Oracle that assigns truth value to causal sentences: Action sentences:B if wedoA. Counterfactuals:B would be different if Awere true. Explanation:B occurredbecauseof A. Optional:with whatprobability?

  12. FAMILIAR CAUSAL MODEL ORACLE FOR MANIPILATION X Y Z INPUT OUTPUT

  13. Definition: A causal model is a 3-tuple M = V,U,F with a mutilation operator do(x): MMx where: (i) V = {V1…,Vn} endogenous variables, (ii) U = {U1,…,Um} background variables (iii) F = set of n functions, fi : V \ ViU Vi vi = fi(pai,ui)PAi V \ ViUi U CAUSAL MODELS AND CAUSAL DIAGRAMS

  14. Definition: A causal model is a 3-tuple M = V,U,F with a mutilation operator do(x): MMx where: (i) V = {V1…,Vn} endogenous variables, (ii) U = {U1,…,Um} background variables (iii) F = set of n functions, fi : V \ ViU Vi vi = fi(pai,ui)PAi V \ ViUi U I W Q P CAUSAL MODELS AND CAUSAL DIAGRAMS U1 U2 PAQ

  15. Definition: A causal model is a 3-tuple M = V,U,F with a mutilation operator do(x): MMx where: (i) V = {V1…,Vn} endogenous variables, (ii) U = {U1,…,Um} background variables (iii) F = set of n functions, fi : V \ ViU Vi vi = fi(pai,ui)PAi V \ ViUi U CAUSAL MODELS AND MUTILATION (iv) Mx= U,V,Fx, X  V, x  X where Fx = {fi: Vi X }  {X = x} (Replace all functions ficorresponding to X with the constant functions X=x)

  16. Definition: A causal model is a 3-tuple M = V,U,F with a mutilation operator do(x): MMx where: (i) V = {V1…,Vn} endogenous variables, (ii) U = {U1,…,Um} background variables (iii) F = set of n functions, fi : V \ ViU Vi vi = fi(pai,ui)PAi V \ ViUi U I W Q CAUSAL MODELS AND MUTILATION (iv) U1 U2 P

  17. Definition: A causal model is a 3-tuple M = V,U,F with a mutilation operator do(x): MMx where: (i) V = {V1…,Vn} endogenous variables, (ii) U = {U1,…,Um} background variables (iii) F = set of n functions, fi : V \ ViU Vi vi = fi(pai,ui)PAi V \ ViUi U I W Q CAUSAL MODELS AND MUTILATION (iv) Mp U1 U2 P P = p0

  18. Definition: A causal model is a 3-tuple M = V,U,F with a mutilation operator do(x): MMx where: (i) V = {V1…,Vn} endogenous variables, (ii) U = {U1,…,Um} background variables (iii) F = set of n functions, fi : V \ ViU Vi vi = fi(pai,ui)PAi V \ ViUi U PROBABILISTIC CAUSAL MODELS (iv) Mx= U,V,Fx, X  V, x  X where Fx = {fi: Vi X }  {X = x} (Replace all functions ficorresponding to X with the constant functions X=x) Definition (Probabilistic Causal Model): M, P(u) P(u) is a probability assignment to the variables in U.

  19. CAUSAL MODELS AND COUNTERFACTUALS Definition: Potential Response The sentence: “Y would be y (in unit u), had X been x,” denoted Yx(u) = y, is the solution for Y in a mutilated model Mx, with the equations for X replaced by X = x. (“unit-based potential outcome”)

  20. CAUSAL MODELS AND COUNTERFACTUALS Joint probabilities of counterfactuals: Definition: Potential Response The sentence: “Y would be y (in unit u), had X been x,” denoted Yx(u) = y, is the solution for Y in a mutilated model Mx, with the equations for X replaced by X = x. (“unit-based potential outcome”)

  21. CAUSAL MODELS AND COUNTERFACTUALS In particular: Definition: Potential Response The sentence: “Y would be y (in unit u), had X been x,” denoted Yx(u) = y, is the solution for Y in a mutilated model Mx, with the equations for X replaced by X = x. (“unit-based potential outcome”) Joint probabilities of counterfactuals:

  22. 3-STEPS TO COMPUTING COUNTERFACTUALS Abduction TRUE S5. If the prisoner is dead, he would still be dead if A were not to have shot. DDA (Court order) U TRUE (Captain) C (Riflemen) A B (Prisoner) D

  23. 3-STEPS TO COMPUTING COUNTERFACTUALS Abduction Action Prediction U U TRUE TRUE C C FALSE FALSE A B A B D D TRUE TRUE S5. If the prisoner is dead, he would still be dead if A were not to have shot. DDA U TRUE C A B D

  24. COMPUTING PROBABILITIES OF COUNTERFACTUALS Abduction Action Prediction U U P(u|D) P(u) P(u|D) P(u|D) C C FALSE FALSE A B A B D D TRUE P(DA|D) P(S5). The prisoner is dead. How likely is it that he would be dead if A were not to have shot. P(DA|D) = ? U C A B D

  25. CAUSAL INFERENCE MADE EASY (1985-2000) • Inference with Nonparametric Structural Equations • made possible through Graphical Analysis. • Mathematical underpinning of counterfactuals • through nonparametric structural equations • Graphical-Counterfactuals symbiosis

  26. IDENTIFIABILITY Definition: Let Q(M) be any quantity defined on a causal model M, andlet A be a set of assumption. Q is identifiable relative to A iff P(M1) = P(M2) ÞQ(M1) = Q(M2) for all M1, M2, that satisfy A.

  27. IDENTIFIABILITY Definition: Let Q(M) be any quantity defined on a causal model M, andlet A be a set of assumption. Q is identifiable relative to A iff P(M1) = P(M2) ÞQ(M1) = Q(M2) for all M1, M2, that satisfy A. In other words, Q can be determined uniquely from the probability distribution P(v) of the endogenous variables, V, and assumptions A.

  28. IDENTIFIABILITY Definition: Let Q(M) be any quantity defined on a causal model M, andlet A be a set of assumption. Q is identifiable relative to A iff P(M1) = P(M2)ÞQ(M1) = Q(M2) for all M1, M2, that satisfy A. In this talk: A: Assumptions encoded in the diagram Q1: P(y|do(x)) Causal Effect (= P(Yx=y)) Q2: P(Yx =y | x, y) Probability of necessity Q3: Direct Effect

  29. THE FUNDAMENTAL THEOREM OF CAUSAL INFERENCE Causal Markov Theorem: Any distribution generated by Markovian structural model M (recursive, with independent disturbances) can be factorized as Where pai are the (values of) the parents of Viin the causal diagram associated with M.

  30. Corollary: (Truncated factorization, Manipulation Theorem) The distribution generated by an intervention do(X=x) (in a Markovian model M) is given by the truncated factorization THE FUNDAMENTAL THEOREM OF CAUSAL INFERENCE Causal Markov Theorem: Any distribution generated by Markovian structural model M (recursive, with independent disturbances) can be factorized as Where pai are the (values of) the parents of Viin the causal diagram associated with M.

  31. Given P(x,y,z),should we ban smoking? U (unobserved) U (unobserved) X = x Y Z X Y Z Smoking Tar in Lungs Cancer Smoking Tar in Lungs Cancer RAMIFICATIONS OF THE FUNDAMENTAL THEOREM Pre-intervention Post-intervention

  32. Given P(x,y,z),should we ban smoking? U (unobserved) U (unobserved) X = x Y Z X Y Z Smoking Tar in Lungs Cancer Smoking Tar in Lungs Cancer RAMIFICATIONS OF THE FUNDAMENTAL THEOREM Pre-intervention Post-intervention

  33. Given P(x,y,z),should we ban smoking? U (unobserved) U (unobserved) X = x Y Z X Y Z Smoking Tar in Lungs Cancer Smoking Tar in Lungs Cancer RAMIFICATIONS OF THE FUNDAMENTAL THEOREM Pre-intervention Post-intervention To compute P(y,z|do(x)), wemust eliminate u. (Graphical problem.)

  34. G Gx THE BACK-DOOR CRITERION Graphical test of identification P(y | do(x)) is identifiable in G if there is a set Z of variables such that Zd-separates X from Y in Gx. Z1 Z1 Z2 Z2 Z Z3 Z3 Z4 Z5 Z5 Z4 X X Z6 Y Y Z6

  35. G Gx Moreover, P(y | do(x)) = åP(y | x,z) P(z) (“adjusting” for Z) z THE BACK-DOOR CRITERION Graphical test of identification P(y | do(x)) is identifiable in G if there is a set Z of variables such that Zd-separates X from Y in Gx. Z1 Z1 Z2 Z2 Z Z3 Z3 Z4 Z5 Z5 Z4 X X Z6 Y Y Z6

  36. RULES OF CAUSAL CALCULUS • Rule 1:Ignoring observations • P(y |do{x},z, w) = P(y | do{x},w) • Rule 2:Action/observation exchange • P(y |do{x}, do{z}, w) = P(y|do{x},z,w) • Rule 3: Ignoring actions • P(y |do{x},do{z},w) = P(y|do{x},w)

  37. DERIVATION IN CAUSAL CALCULUS Genotype (Unobserved) Smoking Tar Cancer Probability Axioms P (c |do{s})=tP (c |do{s},t) P (t |do{s}) Rule 2 = tP (c |do{s},do{t})P (t |do{s}) Rule 2 = tP (c |do{s},do{t})P (t | s) Rule 3 = tP (c |do{t})P (t | s) Probability Axioms = stP (c |do{t},s) P (s|do{t})P(t |s) Rule 2 = stP (c | t, s) P (s|do{t})P(t |s) Rule 3 = stP (c | t, s) P (s) P(t |s)

  38. OUTLINE • Modeling: Statistical vs. Causal • Causal models and identifiability • Inference to three types of claims: • Effects of potential interventions, • Claims about attribution (responsibility)

  39. DETERMINING THE CAUSES OF EFFECTS (The Attribution Problem) • Your Honor! My client (Mr. A) died BECAUSE • he used that drug.

  40. DETERMINING THE CAUSES OF EFFECTS (The Attribution Problem) • Your Honor! My client (Mr. A) died BECAUSE • he used that drug. • Court to decide if it is MORE PROBABLE THAN • NOT that A would be alive BUT FOR the drug! • P(? | A is dead, took the drug) > 0.50

  41. THE PROBLEM • Theoretical Problems: • What is the meaning of PN(x,y): • “Probability that event y would not have occurred if it were not for event x, given that x and y did in fact occur.”

  42. THE PROBLEM • Theoretical Problems: • What is the meaning of PN(x,y): • “Probability that event y would not have occurred if it were not for event x, given that x and y did in fact occur.” • Answer:

  43. THE PROBLEM • Theoretical Problems: • What is the meaning of PN(x,y): • “Probability that event y would not have occurred if it were not for event x, given that x and y did in fact occur.” • Under what condition can PN(x,y) be learned from statistical data, i.e., observational, experimental and combined.

  44. WHAT IS INFERABLE FROM EXPERIMENTS? Simple Experiment: Q = P(Yx= y | z) Z nondescendants of X. Compound Experiment: Q = P(YX(z) = y | z) Multi-Stage Experiment: etc…

  45. CAN FREQUENCY DATA DECIDE LEGAL RESPONSIBILITY? ExperimentalNonexperimental do(x) do(x) xx Deaths (y) 16 14 2 28 Survivals (y) 984 986 998 972 1,000 1,000 1,000 1,000 • Nonexperimental data: drug usage predicts longer life • Experimental data: drug has negligible effect on survival • Plaintiff: Mr. A is special. • He actually died • He used the drug by choice • Court to decide (given both data): • Is it more probable than not that A would be alive • but for the drug?

  46. TYPICAL THEOREMS (Tian and Pearl, 2000) • Identifiability under monotonicity (Combined data) • corrected Excess-Risk-Ratio • Bounds given combined nonexperimental and experimental data

  47. WITH PROBABILITY ONE P(yx | x,y) =1 SOLUTION TO THE ATTRIBUTION PROBLEM (Cont) • From population data to individual case • Combined data tell more that each study alone

  48. OUTLINE • Modeling: Statistical vs. Causal • Causal models and identifiability • Inference to three types of claims: • Effects of potential interventions, • Claims about attribution (responsibility) • Claims about direct and indirect effects

  49. QUESTIONS ADDRESSED • What is the semantics of direct and indirect effects? • Can we estimate them from data? Experimental data?

  50. WHY DECOMPOSE EFFECTS? • Direct (or indirect) effect may be more transportable. • Indirect effects may be prevented or controlled. • Direct (or indirect) effect may be forbidden  Pill Pregnancy + + Thrombosis Gender Qualification Hiring

More Related