200 likes | 519 Views
Neuron Model and Network Architectures. Biological Inspiration. Neuron Model. a 1 ~ a n 為輸入向量的各個分量 w 1 ~ w n 為神經元各個突觸的權值 b 為偏差 f 為傳遞函數,通常為非線性函數。 例如: hardlim ( n ) , n 正為 1 ,其餘 0 t 為神經元輸出. Notation. Scalars-small italic letters : a,b,c Vectors-small bold nonitalic letters : a,b,c
E N D
Neuron Model and Network Architectures
Neuron Model a1~an為輸入向量的各個分量 w1~wn為神經元各個突觸的權值 b為偏差 f為傳遞函數,通常為非線性函數。 例如:hardlim(n) ,n正為1,其餘0 t為神經元輸出
Notation • Scalars-small italic letters:a,b,c • Vectors-small bold nonitalic letters:a,b,c • Matrices-capital BOLD nonitalic letters:A,B,C • Input-p,p,P • Weight-w,w,W • Bias-b,b • Output-a,a,a(t)
Single-Input Neuron 例1:w=3,p=2 and b=-1.5then a=f(3(2)-1.5)=f(4.5)
Transfer Functions a=0 n<0 a=1 n>=0 例2:w=3, p=2 and b=-1.5then a=hardlim(3(2)-1.5)=hardlim(4.5)=1
Transfer Functions 例3:w=3, p=2 and b=-1.5then a=purelin(3(2)-1.5)=purelin(4.5)=4.5
Transfer Functions 例4:w=3, p=2 and b=-1.5then a=logsig(3(2)-1.5)=logsig(4.5)=
0<=a<=1 -1<=a<=1
Multiple-Input Neuron Abbreviated Notation Neuron With R Inputs
Example P2.3 Given a two-input neuron with the following parameters: b=1.2, W= [ 3 2 ] and p= [ -5 6 ]T , calculate the neuron output for the following transfer functions: i. A symmetrical hard limit transfer function ii. A saturating linear transfer function iii. A hyperbolic tangent sigmoid(tansig) transfer function i. a=hardlims(-1.8)= -1 ii. a=satlin(-1.8)= 0 iii. a=tansig(-1.8)=
Layer of S Neurons R Input S Output i.e.,R≠S Layer of S Neurons
Abbreviated Notation w w ¼ w 1 , 1 1 , 2 1 , R w w ¼ w W 2 , 1 2 , 2 2 , R = w w ¼ w S , 1 S , 2 S , R p b a 1 1 1 p b a p a b 2 2 2 = = = p b a R S S
Multiple Layers of Neurons Three-Layer Network
Abbreviated Notation Hidden Layers Output Layer
Delays and Integrators a(0)=a(0) a(1)=u(0)