210 likes | 457 Views
RADIATION IN POROUS MEDIA: AN UPSCALING METHODOLOGY APPLIED TO A REACTOR NUCLEAR CORE. E nergétique M oléculaire et M acroscopique, C ombustion E.M2.C. Estelle Iacona, Jean Taine and Fabien Bellet. Ecole Centrale Paris - UPR 288, CNRS. AXES DE RECHERCHE. COMBUSTION. NANO-OPTIQUE ET
E N D
RADIATION IN POROUS MEDIA: AN UPSCALING METHODOLOGY APPLIED TO A REACTOR NUCLEAR CORE Energétique Moléculaire et Macroscopique, Combustion E.M2.C Estelle Iacona, Jean Taine and Fabien Bellet Ecole Centrale Paris - UPR 288, CNRS E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
AXES DE RECHERCHE COMBUSTION NANO-OPTIQUE ET NANO-THERMIQUE 8 ECP Candel S. Darabiha N. Fiorina B. Gicquel O. Massot M Rolon J.C Richecoeur F. Schuller Th. 4 CNRS Ducruix S. Laurent-Nègre F. Veynante D. Zimmer L. IR CNRS: Durox D. Lacoste D. Scouflaire Ph. 3 ECP1 CNRS Greffet J.-J. Volz S. Laroche M. Marquier F. PLASMAS HORS ÉQUILIBRE RAYONNEMENT ET TRANSFERTS COUPLÉS 4 ECP3 CNRS Taine J. Perrin M.Y. Bellet F. Rivière Ph. Goyeau B. Soufiani A. Iacona E. 1 ECP1 CNRS Laux Ch. Bourdon A. IR CNRS: Lacoste D. EM2C E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Carbon foam (porosity 0.93) for some fuel cells (SOFC) Mullite foam (porosity 0.85) for catalytic combustion Some applications of radiation in porous media Combustible grape for nuclear reactor core - AREVA E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Outline Objectives Up scaling method : a direct identification method Application to real porous media E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
dz Problem : Temperature field in the medium? • Coupled heat transfer : • - convection in pores (fluid phase) • - conduction in the fluid and in the solid phases • - radiation : Accurate calculations required in many applications high temperature applications • Local scale transfer : unaffordable (Large computer time and memory)
dz Problem • Medium structure statistically known • Local radiative properties known • Alternative : up scaling method • model of an equivalent semi transparent continuous medium ` => Radiative properties ? Validity? Diffusion Extinction + Absorption extinction coefficient : albédo (diffusion) : Diffusion phase function :
parameter identification method : some drawbacks • assumed semi transparent medium model • (no validity criterion) • indirect method of characterization • (radiative transfer model required to analyze experiments) • accuracy on the determined radiative properties difficult to estimate • error associated with the semi transparent model ? • accuracy of the radiative transfer model ? • accuracy of the identification technique ? E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Outline Objectives Up scaling method : a direct identification method Application to real porous media E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Objectives • From the statistical knowledge of the porous medium structure and its local radiative properties: • calculate the radiative properties of a potentially equivalent semi-transparent medium : • - nonisotropic extinction coefficient b • - nonisotropic absorption coefficient k • - scattering phase function pm • with a direct simulation using a Monte-Carlo method. E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Definitions and assumptions Porous medium statistically isotropic or anisotropic Porous medium statistically homogeneous or nonhomogeneous Diffraction : neglected (l <<D) Solid phase : opaque or semi transparent Fluid phase : transparent or semi transparent E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Statistical approach of radiation u r s0 I (semi-transparent medium) Definition : Extinction =absorption+scattering At local scale: probability of reaching the interface (non spectral, only geometric property) linked to the cumulated distribution function of chord lengths E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
u r I Monte-Carlo method • Typically 109 ramdom rays • any ray : • 1 random original point r into the fluid phase • 1 random direction impact at the solid interface • Calculation of the extinction distance : s0=rI • Calculation of : the normal vector • the impact angle at the solid interface: Deduction of the scattering angle : contribution to the phase function n E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Statistical approach of radiation Radiation Distribution Function Identification Method(RDFI method) 0.95 ge(s,uk) Ge(s,uk) s (mm) s = 0 s = 3 useful extinction optical thickness range Extinction coefficients calculated from identification of Ge(s) with ge(s) with mean square method Identification criterione : E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Outline Objectives Up scaling method : a direct identification method Application to real porous media E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Tomography resolution mid scale (wall pores) Local scale Smm-1andS mm-1, pS 3D Numerical image of a mullite foam sample issued from a tomography IUSTI from ESRF X ray tomography spatial resolution of 5 m E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Nuclear reactor core in severe accident conditions IRNS : French Radiation and nuclear safety institute Degradation, fusion et geometrical modification of the core Cooling fluid leaking Increase of temperature T<500K E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Degraded small scale nuclear core rod bundleGeometry obtained from ray tomography experiment FPT1, IRSN, Cadarache 3D reconstruction 2D of a cross section (density scale in g/cm3) E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
z Degraded small scale nuclear core rod bundleGeometry obtained from ray tomography experiment FPT1, IRSN, Cadarache Numerical image of the whole degraded bundle Walls assumed opaque at local scale : e = 0.8 (Chalopin et al., 2008) E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Bain fondu + cavité B: β=0.28 D: β=0.24 A: β=0.19 C: β=axɛ+b E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
Radiative transfer in a nuclear reactor core For an optically thick REV from the absorption point of view < 0. 2 Radiative conductivity model : Calculated from the obtained radiative properties of the equivalent medium E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP
conclusions General statistical approach of radiation : • Accurate determination of Ge, Pa, Psand p for any porous medium REV Equivalent semi-transparent media :andp by the Radiative Distribution Function Identification (RDFI) method • Validity of the semi transparent medium model : all porous media can’t be modeled by semi transparent media • Direct determination method • radiative properties directly obtained from their definitions, • without use of a radiative transfer model • based on the knowledge of - the porous medium morphology (tomography) - the radiative properties at the local scale (less than the spatial tomography resolution) E. Iacona, J. Taine, F. Bellet Laboratoire EM2C - CNRS - ECP