1 / 37

Benjamin BOIS Centre de Recherches de Climatologie Université de Bourgogne

Methodologies for climate variability analysis of winegrowing regions. A case study of Bordeaux winegrowing area. Benjamin BOIS Centre de Recherches de Climatologie Université de Bourgogne. Spatial analysis of climate for viticulture. Risk management Pest management (models)

arawn
Download Presentation

Benjamin BOIS Centre de Recherches de Climatologie Université de Bourgogne

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Methodologies for climate variability analysis of winegrowing regions.A case study of Bordeaux winegrowing area. Benjamin BOIS Centre de Recherches de Climatologie Université de Bourgogne

  2. Spatial analysis of climatefor viticulture • Risk management • Pest management (models) • Frost, hail, wind, excessive drought risks • Terroir comprehension and characterization • Vineyard management • Site selection Source : RSVAH (2007), Sandoz Bindi & Maselli (2001)

  3. 10 cm 1 m 10 m 100 m 1 km 10 km 100 km 1000 km 1 cm Climate differences  Uncertainty ? Climate differences > Uncertainty Spatial scale in climatology Macro-scale Meso-scale Local scale Micro-scale Leaf Canopy Plot Vineyard Region Country From Oke (1978)

  4. Interpolation Remote sensing 11,5°C 14°C 13°C ? Meteorological models 12°C Climate spatialization

  5. 30 120 25 100 20 80 Temperature (°C) 15 60 Rainfall (mm) 10 40 5 20 RR Tmin 0 0 Tmax Mai Jan. Mar. Nov. Sept. Jul. Tmoy Bordeaux winegrowing region Normals (1976-2005) Villenave d’Ornon

  6. Radar Rainfall Stations MODELS ET AGRO-CLIMATIC INDICES at daily time step Soil water balance Degree-days Tmin Tmax CORINE ET0 DEM Rs Sat Zoning

  7. Zoning relevance • Is the spatialization uncertainty sufficiently low to draw reliable analysis of the spatial structure of climate ?

  8. Spatialization accuracy

  9. Predicted values vs. grapevine phenology TEMPERATURE Half-véraison (DD prediction vs. field observations) Spatialization accuracy Spatialization residuals (errors) vs. Measured spatial variability RAINFALL Comparison of several interpolation methods

  10. Zoning relevance • Is the spatialization uncertainty sufficiently low to draw reliable analysis of the spatial structure of climate ? • Is the spatial structure redundant ?

  11. Rainfall year-to-year variability 2004 1994

  12. 1% 1% 12% 64% 21% 1% Cool zones ( +5 to +15 days):  Early cultivars (Merlot, white cultivars,…) Warm zones ( -5 to -15 days):  Late cultivars (Cabernet-Sauvignon, Petit Verdot) Climate change consideration Degree.days Zoning2001-2005 period • Interclass interval : 42 to 79 DD •  5 to 11 days

  13. Conclusions • New technologies (remote sensing, GIS, increasing computing potentialities) • More accurate interpolations, reduction of the “cost / scale dilemma”

  14. Conclusions • The need for climate spatial analysis recommendations  Numerous methods and data Ergonomic ≠ simple !

  15. Thanks ! World classification of winegrowing regions …Work in progress… TERVICLIM (Very large scale climate analysis and modelling) Large scale climate analysis (Jones et al.) Bois (unpublished)

  16. Résultats RMSE = 0.86°C RMSE = 0.59°C

  17. ST Jan.-Sept. 2003 (DD) ST Jan.-Sept. 2002 (DD) Temperature 2001-2005 period  Strong inter-annual variations

  18. Tmin Tmax 1 1 0.9 0.9 OK 0.8 0.8 IDWA RMSE (°C) RMSE (°C) MRK 0.7 0.7 0.6 0.6 0.5 0.5 Year Apr. - Year Apr. - Sept. Sept. Minimal temperature vs. distance to Gironde estuary Daily temperature spatialization

  19. N Rayonnement global • RMSE annuelle de 2,7 MJ.m-2 par jour (19,8%)‏ • Sous-estimation : biais de -11,1% • Climatologie de la Gironde • Gradient Ouest-Est de temps clair décroissant. • Jusqu’à 20% d’écart max. en hiver, 16% en été (8% en Gironde viticole)‏ • Effet notable du relief

  20. Rs HelioClim-1 (MJ.m-2) 10 to 6% 6 to 1% 3 to -3% -3 to -8% -8 to -13% Urban areas Rs pyranometer (MJ.m-2) Solar radiation spatilization 2001-2005 (1826 days) Saint-Émilion village Annual RMSE = 2.7 MJ.m-2 (19.8%) RMSE Aug.-Sept. =2.9 MJ.m-2 (16.6%)

  21. ET0 Rs • Potential Evapotranspiration : Turc Method with local re-adjustement • Annual RMSE = 0.51 (21%) • Apr.-Sept. RMSE = 0.57 (15.9%) Tmin Tmax

  22. N Saint-emilion – “zoom” – moy. Ver mat 20 ans

  23. ETP RMSE = 0.25 mm (11%) RMSE = 0.41 mm (17%)

  24. ETP (prop. Interpolation T) • Données de validation croisée du processus d’interpolation des températures (MRK) • Faible propagation des erreurs d’interpolation de la température quotidienne RMSE ~ 0.05 mm

  25. Numerous artifacts with radar rainfall estimates  Ordinary kriging at different time steps RADAR Rainfall spatialization 114 days – 51 raingauges location Radar (Hydram Method) RMSE = 4.4 mm Ordinary kriging RMSE = 2.5 mm

More Related