1 / 46

Chapter 4

Chapter 4. Forces and Mass. Classical Mechanics. Conditions when Classical Mechanics does not apply very tiny objects (< atomic sizes) objects moving near the speed of light. Newton’s First Law.

arawn
Download Presentation

Chapter 4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 4 Forces and Mass

  2. Classical Mechanics Conditions when Classical Mechanics does not apply • very tiny objects (< atomic sizes) • objects moving near the speed of light

  3. Newton’s First Law • If the net force SF exerted on an object is zerok the object continues in its original state of motion. That is, if SF = 0, an object at rest remains at rest and an object moving with some velocity continues with the same velocity. • Contrast with Aristotle!

  4. Forces • Usually think of a force as a push or pull • Vector quantity • May be contact or field force

  5. Contact and Field Forces

  6. Fundamental Forces • Types • Strong nuclear force • Electromagnetic force • Weak nuclear force • Gravity • Characteristics • All field forces • Listed in order of decreasing strength • Only gravity and electromagnetic in mechanics

  7. Fundamental Forces • Types • Strong nuclear force • Electromagnetic force • Weak nuclear force • Gravity • Characteristics • All field forces • Listed in order of decreasing strength • Only gravity and electromagnetic in mechanics

  8. Strong Nuclear Force • QCD (Quantum chromodynamics) confines quarks to interior of protons and neutrons • Force between protons and neutrons responsible for formation of nuclei • QCD: Exchange of gluons • Nuclear Force: Exchange of pions

  9. Electromagnetic Force • Opposites attract, like-signs repel • Electric force responsible for binding of electrons to atoms and atoms to each other • Magnetic forces arise from moving charges and currents • Electric motors exploit magnetic forces

  10. Electromagnetic Force • Opposites attract, like-signs repel • Electric force responsible for binding of electrons to atoms and atoms to each other • Magnetic forces arise from moving charges and currents • Electric motors exploit magnetic forces

  11. Weak Nuclear Force • Involves exchange of heavy W or Z particle • Responsible for decay of neutrons

  12. Gravity • Attractive force between any two bodies • Proportional to both masses • Inversely proportional to square of distance

  13. Inertia • Tendency of an object to continue in its original motion

  14. Mass • A measure of the resistance of an object to changes in its motion due to a force • Scalar quantity • SI units are kg

  15. Newton’s Second Law • The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. • F and a are both vectors

  16. Units of Force • SI unit of force is a Newton (N) • US Customary unit of force is a pound (lb) • 1 N = 0.225 lb • See table 4.1

  17. Weight • The magnitude of the gravitational force acting on an object of mass m near the Earth’s surface is called the weight w of the object

  18. Weight and Mass • Mass is an inherent property • Weight is not an inherent property of an object • Weight depends on location

  19. Newton’s Third Law • If two objects interact, the force F12 exerted by object 1 on object 2 is equal in magnitude but opposite in direction to the force F21 exerted by object 2 on object 1. • Equivalent to saying a single isolated force cannot exist • For every action there is an equal and opposite reaction

  20. Newton’s Third Law cont. • F12 may be called the action force and F21 the reaction force • Either force can be the action or the reaction force • The action and reaction forces act on different objects

  21. Some Action-Reaction Pairs • n and n’ • n is the normal force, the force the table exerts on the TV • n is always perpendicular to the surface • n’ is the reaction – the TV on the table • n = - n’

  22. More Action-Reaction pairs • Fg and Fg’ • Fg is the force the Earth exerts on the object • Fg’ is the force the object exerts on the earth • Fg = -Fg’

  23. Forces Acting on an Object • Newton’s Law uses the forces acting on an object • n and Fg are acting on the object • n’ and Fg’ are acting on other objects

  24. Applying Newton’s Laws • Assumptions • Objects behave as particles • ignore rotational motion (for now) • Masses of strings or ropes are negligible • Interested only in the forces acting on the object • neglect reaction forces

  25. Problem Solving Strategy • Make a free-body diagram • Identify object (free body) • Label all forces acting on object • Resolve forces into x- and y-components, using convenient coordinate system • Apply equations, keep track of signs!

  26. Examples of Mechanical Forces • Strings, ropes and Pulleys • Gravity • Normal forces • Friction • Springs (later in the book)

  27. Some Rules for Ropes and Pulleys • When a rope is attached to an object, the force of the rope on that object is away from that object • The magnitude of the force is called the tension • The tension does not change when going over a pulley (if frictionless)

  28. Equilibrium • An object either at rest or moving with a constant velocity is said to be in equilibrium • The net force acting on the object is zero

  29. Do Cable Pull Demo

  30. Example Given that Mlight = 25 kg, find all three tensions T3 = 245.3, T1 = 147.6 kg, T2 = 195.9 kg

  31. Example a) Find acceleration b) Find T c) Find T3 d) Find force ceiling must exert on pulley a) a=g/6, b) T= 57.2 Nc) T3=24.5 N, d) Fpulley=2T = 114.5 N

  32. Inclined Planes • Choose x along the incline and y perpendicular to incline • Replace force of gravity with its components

  33. Example Find the acceleration and the tension a = 4.43 m/s2, T= 53.7 N

  34. Forces of Friction • Resistive force between object and neighbors or the medium • Examples: • Sliding a box • Air resistance • Rolling resistance

  35. Sliding Friction • Proportional to the normal force • Direction is parallel to surface and opposite other forces • Force of friction is nearly independent of the area of contact • The coefficient of friction (µ) depends on the surfaces in contact

  36. Coefficients of Friction

  37. Static Friction, ƒs • ms is coefficient of static friction • n is the normal force f F

  38. Kinetic Friction, ƒk • mk is coefficient of kinetic friction • Friction force opposes F • n is the normal force f F

  39. Example The man pushes/pulls with a force of 200 N. Thechild and sled combo has a mass of 30 kg and the coefficient of kinetic friction is 0.15. For each case:What is the frictional force opposing his efforts? What is the acceleration of the child? f=59 N, a=4.7 m/s2 / f=29.1 N, a=5.7 m/s2

  40. Example Given m1 = 10 kg and m2 = 5 kg: a) What value of ms would stop the block from sliding? b) If the box is sliding and mk = 0.2, what is the acceleration? c) What is the tension of the rope? ms = 0.5, a=1.96 m/s2

  41. Example What is the minimum ms required to prevent the sled from slipping down a hill of slope 30 degrees? ms = 0.577

  42. Example You are calibrating an accelerometer so that you can measure the steady horizontal acceleration of a car by measuring the angle a ball swings backwards. If M = 2.5 kg and the acceleration, a = 3.0 m/s2:a) At what angle does the ball swing backwards? b) What is the tension in the string? q =17 degT= 25.6 N q

  43. Quiz, All Sections 1) What is your section number?

  44. Quiz, Section 1 2) Which statements are correct?Assume the objects are static. A) T1 must = T2 B) T2 must = T3 C) T1 must be < Mg D) T1+T2 must be > Mg • A only • A and B only • A, B and C only • All statements • None of the statements cos(10o)=0.985 sin(10o)=0.173

  45. Quiz, Section 2 2) Which statements are correct?Assume the objects are static. A) T1 must = T2 B) T2 must = T3 C) T1 must be < Mg D) T1+T2 must be > Mg • A only • A and B only • A, B and C only • All statements • None of the statements cos(10o)=0.985 sin(10o)=0.173

  46. Quiz, Section 3 2) Which statements are correct?Assume the objects are static. A) T1 must = T2 B) T2 must = T3 C) T1 must be < Mg D) T1+T2 must be > Mg • A only • A and B only • A, B and C only • All statements • None of the statements cos(10o)=0.985 sin(10o)=0.173

More Related