1 / 30

Ivan Hamráček Supervisor: RNDr. Jaroslav Antoš CSc.

Institute of Experimental Physics Slovak Academy of Sciences, Košice. Spectroscopic Measurements of the Single Bubble Sonoluminescence. Ivan Hamráček Supervisor: RNDr. Jaroslav Antoš CSc. Doctoral Seminar IEP, SAS, Košice 2011. hamracek@saske.sk. Sonoluminescence.

archer
Download Presentation

Ivan Hamráček Supervisor: RNDr. Jaroslav Antoš CSc.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Institute of Experimental Physics Slovak Academy of Sciences, Košice SpectroscopicMeasurementsofthe Single BubbleSonoluminescence Ivan Hamráček Supervisor: RNDr. Jaroslav Antoš CSc. Doctoral Seminar IEP, SAS, Košice 2011 hamracek@saske.sk

  2. Sonoluminescence light emitting from the gaseous bubbles in the liquid excited by the acoustic pressure field temperature in bubble (~ 10.000 K ) light flash duration (~100 ps) SBSL in water; I. Hamracek; April 2006 SBSL light production mechanism still unknown MBSL Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  3. Single Bubble Sonoluminescence (SBSL) one gaseous bubble trapped in the center of the flask exposed to ultrasound concentration of the energy of acoustic vibrations by a factor of 1012 106 photons (2-6eV) per one flash Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  4. 50 1 40 30 acoustic amplitude [ATM] 0 radius [μm] 20 vR ~ 4M 10 -1 0 time [μs] 0 10 20 30 R0 ~ 0,5 m R0 ~ 5 m SBSL Cycle RMAX ~ 50 m Mie scattering t~ 60 - 250 ps TCSPC • bubble expansion and implosion • volume shift by factor 106 • slow isothermal expansion • fast adiabatic colaps • shock wave • high pressure and temperature • flash • periodic intervals • 106 photons T ~ 104 - 108 K ! spectrum Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  5. Stable SBSL ConditionPreparation • SL laboratory formation • experimental apparatus for SBSL creation • technology of proper conditions for stable SBSL • automation of SBSL creation Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  6. Temperature Estimation: SBSL Spectrum • continuous in 190nm – 700nm region • UV sector absorbed by water • light production mechanism still unknown • very low intensity • wavelength calibration • absolute spectral response calibration • calibration verification • medium absorbance analysis • suitable optical apparatus • OceanOptics USB4000 Spectrometer • detector range 200 – 900 nm • 3648-element Toshiba linear CCD array • integration time 3.8 ms – 10 s USB4000 Spectrometer QE65000-FL Spectrometer Uncalibrated deformed SBSL Spectrum 200-900nm, 7s/20average/10box, 2007 Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  7. SBSL Spectrum Wavelength Calibration • wavelength drift slightly with time • OceanOptics HG-1 Mercury Argon Calibration Source • spectrum calibration included with every measurement • automatization needed • study of external effects on w.c. (spec. board temperature, integration time, averaging, source runtime) • automatized calibration in LabView (HG-1 spectrum and spectrum parameters loaded, line identification, calibration recommendation, archiving data) HG-1 Mercury Argon Calibration Source Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  8. SBSL Spectrum Absolute Spectral Response Calibration • corrections: • size of light emitting surface • time integration (pulses) • emissivity (temperature and wavelength dependent) • transmittance (water, flask glass, lens) • geometric (water, flask, lens, light source distance) • keep a check on: • conditions (temperature, humidity, atmospheric pressure) • light distortions (light dispersion, reflection, refraction) • mechanical distortions (fiber) • aberrations (chromatic, defocus, spherical, astigmatism, coma, Petzval field curvature) LS-1-CAL Radiometric Calibration Standard other corrections USB4000 Spectrometer Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  9. SBSL Spectrum Calibration Verification • thermalsources (Tungsten&Nichromefilament, Sun, stars, hotplate) • Planck’s&Stefan-Boltzmann & Wien’s law • other (LED) • automated Tungsten & Nichrome filament • temperature estimator (LabView) • (I,U,P,T controlling and recording) • systematically undervaluedtemperatures • automated software for Planck fit • (raw spectra, calibration, spectral power, • spectral radiance, number of photons, corrections • (transmittances, emissivity)) Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  10. SBSL Spectrum Calibration Verification • Sun spectra measurements • airmass(coordinate, time, zenith angle) • wavelength dependent correction • (atmosphere purity(clouds, dust, smog...), • spectra measurements procedure • (acceptanceangle, spectrometeroverheat)…) • LEDs • reproducibility, corrections, distortions, • spectra, radial distributions, dissipated • power, Neckel H. a Labs D. TheSolarRadiationBetween 3300 and 12500 A; SolarPhysics, 1984, 90, 205-258 Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  11. SBSL Spectrum Preliminary Results Sonoluminescence spectrum, T = 10.400 K f = 26.698 kHz; A = 7,4 V; integration time = 10 s; averaging = 10; boxcar width =50 dissolved oxygen = 3,2 mg/l T = 21°C; pa = 1015 mbar • included: • calibration function, integration time, • light collection solid angle • not included: • water, glass and optics absorption • optics geometry raw spectra Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  12. Conclusion • conditionsforstableSBSLobservations • experimentalapparatusfor SBSL creation – done • technologyofproperconditionsforstable SBSL (evenhours) - done • SBSL temperatureestimation • observationofraw SL spectra - done • automatedwavelengthcalibration - done • absolutespectralresponsecalibration – in progress • calibration verification – in progress • distortions & corrections analysis – in progress • preliminarytemperatureestimation – done • suitableapproachfor UV detection(wavelengthshifter, closer to bubble…) • newspectrometer (QE65000) • possibilityoftemperatureregulations – to do Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  13. Conclusion • estimationofflashduration • confirmation of one lightflash per oneacousticcycle - done • confirmationofflashdurationbeingofcoupleorderslowerthanacousticcycle (PMT) - done • flashregistratedwith MPPC - single photons registered – done • diameter measurements • Mie Scattering – qualitative agreement with dynamics theory – done • slow diameter increasing, fast collapse, afterpulses observed – done • corelationsbetweenparameters(pressureamplitude, temperature, • intensity, flashduration) – to do • required experimental apparatus for dissertation aims completion already obtained – done Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  14. Thank you for your attention! Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  15. BackupSlides Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  16. E3649A Dual Output Power Supply E3647A Dual Output Power Supply PicoScope 3424 935 Quad 200MHz CFD VME-V1290N 16 ChannelMultihit TDC HI 9142 Dissolved Oxygen Meter 34410A 6½ DigitMultimeter 33220A FunctionGenerator DT-MINI-2-GS LightSource LS-1-CAL RadiometricCalibration Standard CUV-UV CuvetteHolder C10751-03 MPPC SPMMiniHigh Gain APD FVA-UV Attenuator HG-1 MercuryArgonCalibrationSource USB4000 Spectrometer QE65000-FL Spectrometer Sony EVI-D100P Longpass& Shortpass filters 9306 1-GHz Preamplifier Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  17. MieScattering • the light scattered within a given angle is proportional to the square of the • radius of the bubble • signal from the PMT is proportional to the intensity of the scattered light • 565 nm laser (red) • no calibration for PMT signal to radius nor for excitation signal amplitude to • acoustic pressure field amplitude yet • proportional parameters: good qualitative agreement with Rayleigh-Plesset • equation and published experimental results light pulses observed excitation signal amplitude [V] light pulses not observed Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  18. MieScattering Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  19. t0 Bjerknes force – time average t0+T/2 BubbleLevitation in Liquid p(t)=p0sin(ωt) acoustic pressure p(x,t) p(t)=0 X position Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  20. Rayleigh – PlessetEquation qualitative bubble dynamics description R – bubble radius pH – hydrostatic pressure pA – acoustic amplitude σ – surface tension μ – liquid viscosity • Assumptions • - liquid • incompressibility • - slowradiusshift Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  21. relative intensity of light emitted SBSL SL intensity no SBSL 50 40 radius [μm] 30 20 10 1 0,1 10 100 1,3 0 % inert gas in N2 10 1,2 20 acoustic amplitude [ATM] 30 1,1 time [μs] 40 1,0 50 S. Putterman; February 1995 ParametersAffecting on SBSL Weninger et al.; May 1995 Hiller et al.; 1992 • liquid used • bubble gas used • acoustic amplitude • ambient temperature • others? M.P. Brenner; April 2002 Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  22. flask SBSL Apparatus function generator amplifier • requirements ~ • signal generated and amplified with frequency of ~ 27 kHz L • transformed by piezoceramic transducers to US standing wave 1MΩ • parameters monitored • function generator output voltage camera pmt • LC circuit current 10kΩ 1Ω • sound captured with microphone at the bottom of the flask USB 4000 • flash captured with photomultiplier • apparatus scene captured with camera osciloscope pc • spectrum scanned USB 4000 Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  23. SBSL Apparatus Ivan Hamracek, Doctoral Seminar IEP SAS 2011

  24. SBSL Creation and Observation • liquidpreparation • 5-10 foldcut-downofgascontent in destilatedwater • 115 ml, liquid surface in flask neck for spherical liquid shape • signal generated • 26,69 kHz, 3-5 Vpp • bubble creation • liquid surface undulation(miniature • bubble creation) • sonoluminescence observation SBSL in water on osciloscopeLeCroy; I. Hamráček; April 2006 • microphone output signal folds • light pulses captured with PMT Ivan Hamracek, DoctoralSeminar IEP SAS 2011

  25. SBSL Observation Ivan Hamracek, DoctoralSeminar IEP SAS 2011

  26. exposition [s]: 3,2 10 6 5 2 1 0,5 50 400 100 400 400 400 400 ISO: 1mm 50μm focal distance 11mm, F/3.2 r ~ 50m Hamráček; April 2006; Olympus C750 dig. zoom 15x 0.3mm

  27. exposition [s]: 3,2 10 6 5 2 1 0,5 50 400 100 400 400 400 400 ISO: 1mm 50μm focal distance 11mm, F/3.2 r ~ 50m Hamráček; April 2006; Olympus C750 dig. zoom 15x 0.3mm

  28. Light Flash Duration Photon Counting • Photon Counting • low-light-level measurements (luminescence, fluorescence) • incident photons are detected as separate pulses • average time intervals between signal pulses are wider than the time resolution of PMT • signal stability, detection effeciency, signal-to-noise ratio • <100 ps time resolution • 2 fast detectors - time difference of • signal registration distribution • PMT – MPPC, CFD – constant fraction discriminator , TAC – time to amplitude converter, • MCA – multichannel analyzer U(Δt) start CFD TAC MCA PMT Light source CFD PMT stop

  29. Light Flash Duration Silicon Photomultiplier (SiPM) • novel type semiconducting photon sensor • built from an avalanche photodiode (APD) array on common Si substrate • sensitive size 1x1 mm2 • great photon dtection ability • excellent cost performance • very compact size SPMMini PMT Ivan Hamracek, Written part of the dissertation examination

  30. Ivan Hamracek, DoctoralSeminar IEP SAS 2011

More Related