1 / 61

Isotopic composition [ACE] Solar Modulation [PAMELA,ULYSSES]

Results from PAMELA Mirko Boezio INFN Trieste, Italy On behalf of the PAMELA collaboration Indirect and Direct Detection of Dark Matter February 7 th 2011. Isotopic composition [ACE] Solar Modulation [PAMELA,ULYSSES]. Antimatter Dark Matter. [BESS, PAMELA, AMS]. Elemental Composition.

arden
Download Presentation

Isotopic composition [ACE] Solar Modulation [PAMELA,ULYSSES]

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Results from PAMELAMirkoBoezioINFN Trieste, ItalyOn behalf of the PAMELA collaborationIndirect and Direct Detection of Dark Matter February 7th 2011

  2. Isotopic composition [ACE] Solar Modulation [PAMELA,ULYSSES] Antimatter Dark Matter [BESS, PAMELA, AMS] Elemental Composition [CREAM, ATIC, TRACER, NUCLEON, CALET, GAMMA-400?] Extreme Energy CR [AUGER, EUSO, TUS/KLYPVE, OWL??]

  3. PAMELA Payload for Antimatter Matter Exploration and Light NucleiAstrophysics

  4. Italy: CNR, Florence Bari Florence Frascati Naples Rome Trieste Russia: Moscow St. Petersburg Germany: Sweden: Siegen KTH, Stockholm PAMELA Collaboration

  5. PAMELA Instrument GF ~21.5 cm2sr Mass: 470 kg Size: 130x70x70 cm3

  6. MDR 1.2 TeV Mirko Boezio, IDDDM, Aspen, 2011/02/07

  7. Design Performance Energy range Antiprotons 80 MeV - 190 GeV Positrons 50 MeV – 300 GeV Electrons up to 800 GeV Protons up to 1 TeV Helium up to 400 GeV/n Electrons+positrons up to 2 TeV ( by calorimeter) Light Nuclei (Li/Be/B/C) up to 200 GeV/n AntiNuclei search sensitivity of 3x10-8 in He/He Mirko Boezio, IDDDM, Aspen, 2011/02/07

  8. PAMELALaunch15/06/0616 Gigabytes trasmitted daily to GroundNTsOMZ Moscow

  9. 350 km SAA 70o 610 km Orbit Characteristics • Low-earth elliptical orbit • 350 – 610 km • Quasi-polar (70o inclination) • SAA crossed Mirko Boezio, IDDDM, Aspen, 2011/02/07

  10. Outer radiation belt Download @orbit 3754 – 15/02/2007 07:35:00 MWT 95 min orbit 3753 orbit 3751 orbit 3752 NP SP EQ EQ S1 S2 S3 Inner radiation belt (SSA)‏

  11. Subcutoff particles Mirko Boezio, IDDDM, Aspen, 2011/02/07

  12. PAMELA milestones • Launch from Baikonur  June 15th 2006, 0800 UTC. • ‘First light’  June 21st 2006, 0300 UTC. • • Detectors operated as expected after launch • • Different trigger and hardware configurations evaluated • PAMELA in continuous data-taking mode since • commissioning phase • ended on July 11th 2006 Main antenna in NTsOMZ Trigger rate* ~25Hz Fraction of live time* ~ 75% Event size (compressed mode) ~5kB 25 Hz x 5 kB/ev ~ 10 GB/day (*outside radiation belts) Till ~now: ~1400 days of data taking ~20 TByte of raw data downlinked >2x109 triggers recorded and analyzed

  13. Scientific goals • Search for dark matter annihilation • Search for antihelium (primordial antimatter) • Search for new Matter in the Universe (Strangelets?) • Study of cosmic-ray propagation (light nuclei and isotopes) • Study of electron spectrum (local sources?) • Study solar physics and solar modulation • Study terrestrial magnetosphere

  14. Dark Matter Indirect Detection Mirko Boezio, IDDDM, Aspen, 2011/02/07

  15. DM annihilations DM particles are stable. They can annihilate in pairs. Primary annihilation channels Final states Decay σa= <σv>

  16. Particle ID with PAMELA Mirko Boezio, IDDDM, Aspen, 2011/02/07

  17. Flight data: 0.171 GV positron Flight data: 0.169 GV electron

  18. Flight data: 0.763 GeV/c antiproton annihilation

  19. Antiproton / Positron Identification Time-of-flight: trigger, albedo rejection, mass determination (up to 1 GeV) Bending in spectrometer: sign of charge Ionisation energy loss (dE/dx): magnitude of charge Interaction pattern in calorimeter: electron-like or proton-like, electron energy Antiproton (NB: e-/p ~ 102) Positron (NB: p/e+ ~103-4)

  20. Flight data: 14.7 GV Interacting nucleus (Z = 8)‏

  21. Antiproton to proton ratio (0.06 GeV - 180 GeV) Simon et al. (ApJ 499 (1998) 250) Ptuskin et al. (ApJ 642 (2006) 902) Donato et al. (PRL 102 (2009) 071301) PRL 102, 051101 (2009) and PRL. 105, 121101 (2010)

  22. Antiproton Flux(0.06 GeV - 180 GeV) Donato et al. (ApJ 563 (2001) 172) Systematics errors included Ptuskin et al. (ApJ 642 (2006) 902) PRL. 105, 121101 (2010)

  23. PAMELA trapped antiprotons Preliminary Antiprotons inside SAA Galactic Antiprotons Antiprotons below cutoff at equator Galactic antiprotons Mirko Boezio, IDDDM, Aspen, 2011/02/07

  24. Positron to Electron Fraction Secondary production Moskalenko & Strong 98 Adriani et al, Astropart. Phys. 34 (2010) 1 arXiv:1001.3522 [astro-ph.HE]

  25. A Challenging Puzzle for CR Physics • Uncertainties on: • Secondary production (primary fluxes, cross section) • Propagation models • Electron spectrum But antiprotons in CRs are in agreement with secondary production

  26. A Challenging Puzzle for CR Physics P.Blasi, PRL 103 (2009) 051104; arXiv:0903.2794 Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated. D. Hooper, P. Blasi, and P. Serpico, JCAP 0901:025,2009; arXiv:0810.1527 Contribution from diffuse mature &nearby young pulsars. I. Cholis et al., Phys. Rev. D 80 (2009) 123518; arXiv:0811.3641v1 Contribution from DM annihilation.

  27. A Challenging Puzzle for CR Physics G. Kane, R. Lu, and S. Watson, Phys.Lett.B681, 151 (2009); arXiv:0906.4765v3 T. Delahaye et al., A&A 501, 821(2009); arXiv: 0809.5268v3

  28. Cosmic Ray Spectra Cosmic-Ray Acceleration and Propagation in the Galaxy Mirko Boezio, IDDDM, Aspen, 2011/02/07

  29. Diffusion Halo Model Mirko Boezio, IDDDM, Aspen, 2011/02/07

  30. PAMELA

  31. Proton and Helium Nuclei Spectra Mirko Boezio, IDDDM, Aspen, 2011/02/07

  32. Proton and Helium Nuclei Spectra GALPROP Mirko Boezio, IDDDM, Aspen, 2011/02/07

  33. Proton and Helium Nuclei Spectra Mirko Boezio, IDDDM, Aspen, 2011/02/07

  34. Boron and Carbon nuclei Spectra Carbon Boron Mirko Boezio, IDDDM, Aspen, 2011/02/07

  35. H isotopes separation 0.9 GV < R < 1 GV p d Mirko Boezio, IDDDM, Aspen, 2011/02/07

  36. Positrons detection Where do positrons come from? Mostly locally within 1 Kpc, due to the energy losses by Synchrotron Radiation and Inverse Compton Typical lifetime

  37. PAMELA electron (e-) spectrum e- e+ + e- Mirko Boezio, IDDDM, Aspen, 2011/02/07

  38. PAMELA electron (e-) spectrum Preliminary Tracker based Calorimeter based Mirko Boezio, IDDDM, Aspen, 2011/02/07

  39. Theoretical uncertainties on “standard” positron fraction γ = 3.54 γ = 3.34 Flux=A • E- T. Delahaye et al., arXiv: 0809.5268v3

  40. PAMELA electron (e-) spectrum Flux=A • E-  = 3.18 ±0.05 GALPROP “New Primary Contribution” prediction from e- flux Mirko Boezio, IDDDM, Aspen, 2011/02/07

  41. Fit of electron spectrum Independently to the fit of the electron spectra, we also perform a χ2 comparison between the expected positron fraction from GALPROP simulation and PAMELA measurement of the positron fraction. Confidence level, in parameter space (2;ϕ0) obtained from a fit of the electron spectra (red) and of the positron fraction (green). Cruces show the best-fit combination. Interestingly, the best fit value for the two independent fit are very similar. Preliminary electron spectrum 99% 95% 90% positron fraction Mirko Boezio, IDDDM, Aspen, 2011/02/07

  42. Solar Modulation Mirko Boezio, IDDDM, Aspen, 2011/02/07

  43. Solar Modulation? ? Positron to Electron Fraction Secondary production Moskalenko & Strong 98 Adriani et al, Astropart. Phys. 34 (2010) 1 arXiv:1001.3522 [astro-ph.HE]

  44. Solar Modulation of Galactic Cosmic Rays PAMELA Courtesy of M. Potgieter

  45. TimeDependenceof PAMELA Proton Flux Preliminary Mirko Boezio, IDDDM, Aspen, 2011/02/07

  46. TimeDependenceof PAMELA Proton Flux Preliminary Mirko Boezio, IDDDM, Aspen, 2011/02/07

  47. Time Dependence of PAMELA Electron (e-) Flux Preliminary Mirko Boezio, IDDDM, Aspen, 2011/02/07

  48. Time Dependence of PAMELA Electron (e-) Flux Preliminary Mirko Boezio, IDDDM, Aspen, 2011/02/07

  49. Time Dependence Preliminary Flux variation as a function of time for rigidities between 0.72 and 1.04 GV

More Related