1 / 33

Heuristics

Heuristics. 19 Oct 12. Agitators and Mixing Equipment. Suspend solids Disperse gases and liquids Emulsify one liquid in another Promote heat transfer Blending two or more materials together. Overmixing maybe undesirable i n biological application, high shear may damage organisms

ardice
Download Presentation

Heuristics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Heuristics 19 Oct 12

  2. Agitators and Mixing Equipment • Suspend solids • Disperse gases and liquids • Emulsify one liquid in another • Promote heat transfer • Blending two or more materials together • Overmixing maybe undesirable • in biological application, high shear may damage organisms • polymer molecules may be damaged by long mixing or high shear • For design or consideration of mixing process should understand: • mechanism of mixing • scale-up criteria • power consumption • flow patterns • mixing time/rates • types of equipment available Coulson and Richardson’s Chemical Engineering Volume 1, 6th ed.

  3. Agitators and Mixing Equipment Fluid mixing Coulson and Richardson’s Chemical Engineering Volume 1, 6th ed.

  4. Agitators and Mixing Equipment Fluid mixing: Baffles • Unbaffled mixing tanks often used: • in transition region • for sticky materials • where perfect cleaning is required • in large tanks where baffle effects are small • processes where it is not clear baffles have an effect on mixing performance G.B. Tatterson., Fluid Mixing and Gas Dispersion in Agitated Tanks, McGraw-Hill, 1991 Coulson and Richardson’s Chemical Engineering Volume 1, 6th ed.

  5. Agitators and Mixing Equipment Fluid mixing: Baffles Fluid mixing: off-center Coulson and Richardson’s Chemical Engineering Volume 1, 6th ed.

  6. Agitators and Mixing Equipment Side mounted mixers. Flow patterns for side-entering propeller Coulson and Richardson’s Chemical Engineering Volume 1, 6th ed. Paul, et.al., Handbook of Industrial Mixing, Wiley, 2004

  7. Agitators and Mixing Equipment Common Impellers Figure 7.20 Commonly used impellers (a) Three-bladed propeller (b) Six-bladed disc turbine (Rushton turbine) (c) Simple paddle (d) Anchor impeller (e) Helical ribbon. Coulson and Richardson’s Chemical Engineering Volume 1, 6th ed.

  8. Agitators and Mixing Equipment Various Turbine Impellers Coulson and Richardson’s Chemical Engineering Volume 1, 6th ed.

  9. Various Impeller Types Axial Flow Impellers Hydrofoil Impellers High-Shear Impellers Radial Flow Impellers Paul, et.al., Handbook of Industrial Mixing, Wiley, 2004

  10. Various Impeller Types R. Hesketh, mixing notes

  11. Various Impeller Types

  12. Agitators and Mixing Equipment Selecting Agitator Type Used to make preliminary agitator selection based on tank volume and liquid viscosity. • Turbines, Pitched Blade Turbines, and Propellers are typically used at high Re and low viscosity. • Anchor, Helical Ribbon, and Paddle agitators are used for higher viscosity (more laminar-like Re) fluids. Coulson and Richardson’s Chemical Engineering Volume 1, 6th ed.

  13. Flow Patterns for Various Impellers Flat Blade Turbine = FBT Pitched Blade Turbine = PBT Paul, et.al., Handbook of Industrial Mixing, Wiley, 2004

  14. Typical Dimensions for Mixing Equipment G.B. Tatterson., Fluid Mixing and Gas Dispersion in Agitated Tanks, McGraw-Hill, 1991

  15. Typical Dimensions for Mixing Equipment G.B. Tatterson., Fluid Mixing and Gas Dispersion in Agitated Tanks, McGraw-Hill, 1991

  16. Power Consumption and Scale-up in Mixing Consider geometry, fluid properties, flow patterns, power, and so on. Has been considered through dimensional analysis. With: For geometrically similar vessels, ratios of all terms to right of the Froude number are negligible. The Froude number is only important when significant vortex develops (in unbaffled tanks); for baffled tanks the NP does not depend on the Froude number. Tatterson & Colson and Richardson.

  17. Power Consumption and Scale-up in Mixing Consider low viscosity, unbaffled systems. Colson and Richardson.

  18. In-Class PS Exercise Consider a solution of sodium hydroxide with the properties listed below. It is agitated by a propeller mixer that is 0.5m in diameter in a 2.28m diameter unbaffled tank. The liquid depth is 2.28m. The impeller is located 0.5m above the bottom of the tank. If the propeller is rotated at 2 Hz, what power is required?

  19. Power Consumption and Scale-up in Mixing Consider low viscosity, baffled systems. Colson and Richardson.

  20. Power Consumption and Scale-up in Mixing Consider low viscosity, baffled systems (wall baffles). Figure 10.59 Power correlations for turbine impellers in a tank with 4 baffles. [w, D, impeller width and diameter, respectively.] Colson and Richardson.

  21. In-Class PS Exercise Assume you are mixing a small amount of material into water in a standard configuration baffled tank. The diameter of the pitched blade turbine is 1 m and it is desired to operate at 84 RPM. Estimate the power required.

  22. Power Consumption and Scale-up in Mixing Consider low viscosity, baffled systems (wall baffles). N.P. Cheremisinoff, Handbook of Chemical Processing Equipment, B-H, 2000

  23. Power Consumption and Scale-up in Mixing Propeller pitch:

  24. Other Terms in Mixing Pumping Capacity: discharge flowrate from an impeller: Tip Speed of an impeller: Torque: “twist” force acting on agitator shaft: Power per unit volume: Blend time (estimation to within 5% desired concentration):

  25. Discharge Coefficient N.P. Cheremisinoff, Handbook of Chemical Processing Equipment, B-H, 2000

  26. Mixing Time Blend time (estimation to within 10% desired concentration): P.M. Doran, Bioprocess Engineering Principles, 2nd Ed., Academic Press 2012

  27. Mixing Time Doran suggests that for turbulent mixing conditions, irrespective of the impeller type, that (baffled vessel, single impeller, H=T): Verified under aerated conditions also (impeller not flooded) and for: P.M. Doran, Bioprocess Engineering Principles, 2nd Ed., Academic Press 2012

  28. In-Class PS Exercise A fermentation broth with properties as given below, is agitated in a 2.7 m3 baffled tank using a Rushton turbine with a diameter of 0.5 m and a stirred speed of 1 Hz. Estimate the mixing time.

  29. Additional Plots for Non-Standard Mixing N.P. Cheremisinoff, Handbook of Chemical Processing Equipment, B-H, 2000

  30. Additional Plots for Non-Standard Mixing N.P. Cheremisinoff, Handbook of Chemical Processing Equipment, B-H, 2000

  31. Additional Plots for Non-Standard Mixing N.P. Cheremisinoff, Handbook of Chemical Processing Equipment, B-H, 2000

  32. Additional Plots for Non-Standard Mixing N.P. Cheremisinoff, Handbook of Chemical Processing Equipment, B-H, 2000

  33. Heuristics Questions?

More Related