1 / 14

Spectral Regions and Transitions

Spectral Regions and Transitions. Infrared radiation induces stretching of bonds, and deformation of bond angles. Associated with each vibrational transition for gas phase molecules is a series of rotational levels leading to more complex rotation-vibrational transitions. symmetrical stretch

ardice
Download Presentation

Spectral Regions and Transitions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spectral Regions and Transitions • Infrared radiation induces stretching of bonds, and deformation of bond angles. Associated with each vibrational transition for gas phase molecules is a series of rotational levels leading to more complex rotation-vibrational transitions symmetrical stretch H-O-H asymmetrical stretch H-O-H symmetrical deformation (H-O-H bend)

  2. Vibrational States and Transitions • The simplest case is a diatomic molecule. Rotations (2) and translations (3) leave only one vibrational degree of freedom, the bond length change, Dr, a one dimensional harmonic oscillator • One can solve this problem exactly as a classical Hook’s law problem with • a restoring force: F = –kDr and • potential energy: V=1/2 k(Dr)2 • Quantum mechanically: Ev = (v+1/2)hn , • n is the vibration frequency

  3. Harmonic Oscillator Model for vibrational spectroscopy (virtual state) E Raman 9 2 hn v = 4 7 2 hn v = 3 5 2 v = 2 hn 3 2 v = 1 hn hn 1 2 hn Ev = (v+½)hn Dv =  1 DE = hn n = (1/2p)(k/m)½ IR v = 0 re re r re q

  4. Vibrational States and Transitions for the simplest harmonic oscillator case (diatomic): n = (1/2p)(k/µ)1/2where k is the force constant (d2V/dq2). • In practice, stronger bonds have sharper (more curvature) potential energy curves, result: higher k, and higher frequency. and µ is the reduced mass [m1m2 / (m1+m2)]. • In practice, heavier atom moving, have lower frequency.  vibrational frequencies reflect structure, bonds and atoms

  5. Vibrational States and Transitions • Summary: high mass ==> low frequency strong bond ==> high frequency • Some simple examples (stretches in polyatomics): -C-C- ~1000 cm-1 C-H ~2800 cm-1 -C=C- ~1600 cm-1 C-D ~2200 cm-1 -C  C- ~2200 cm-1 C---N ~1300 cm-1

  6. Polyatomic Vibrational States • For a molecule of N atoms, there are (3N-6) vibrational degrees of freedom. This complex problem can be solved the harmonic approximation by transforming to a new set of normal coordinates (combinations of internal coordinates, qi) to simplify the potential energy V—method unimportant for this course V =V0+ S (dV/dqi)0qi + (½) S (d2V/dqiqj)0qiqj + . . . . . • This results in a molecular energy that is just the sum of the individual vibrational energies of each normal mode: E = S Ei = S (vi + ½) hni • As a result we have characteristic IR and Raman frequencies, ni, which are reflect bond types in the molecule. The frequency pattern forms a “fingerprint” for the molecule and its structure. • Variations due to conformation and environment give structural insight and are the prime tools for Protein IR and Raman.

  7. Dipole Moment • Interaction of light with matter can be described as the induction of dipoles, mind , by the light electric field, E: • mind= a.E where a is the polarizability • IR absorption strength is proportional to • A ~ |<Yf |m| Yi>|2,transition moment between YiYf • To be observed in the IR, the molecule must change its electric dipole moment, µ , in the transition—leads to selection rules dµ / dQi 0 • Raman intensity is related to the polarizability, • I ~ <Yb |a| Ya>2, similarlyda / dQi 0for Raman observation

  8. IR vs. Raman Selection Rules • At its core, Raman also depends on dipolar interaction, but it is a two-photon process, excite with n0 and detect ns, where nvib = n0 - ns, so there are two m’s. <Y0|m| Yi> • <Yi|m| Yn> ~ a => need a change in POLARIZABILITY for Raman effect Raman IR i n0 ns n n 0 0 nvib = nn-n0 = DE / h nvib = n0-ns

  9. Symmetry Selection Rules (Dipole, etc.) Example: symmetric stretch O=C=O infrared inactive dm/dQ = 0 Raman Intense da/dQ  0 asymmetric stretch O=C=O infrared active dm/dQ  0 bending O=C=O infrared active dm/dQ  0

  10. Complementarity: IR and Raman IR Raman If molecule is centrosymmetric, no overlap of IR and Raman

  11. Vibrational Transition Selection Rules Harmonic oscillator: only one quantum can change on each excitation D vi = ± 1,D vj = 0; i  j . These are fundamental vibrations Anharmonicity permits overtones and combinations Normally transitions will be seen from only vi = 0, since most excited states have little population. Population, ni, is determined by thermal equilibrium, from the Boltzman relationship: ni = n0 exp[-(Ei-E0)/kT], where T is the temperature (ºK) – (note: kT at room temp ~200 cm-1)

  12. Anharmonic Transitions E/De D0 DE01 = hnanh ( r - re )/re Real molecules are anharmonic to some degree so other transitions do occur but are weak. These are termed overtones (D vi = ± 2,± 3, . .) or combination bands (D vi = ± 1, D vj = ± 1, . .). Biological systems we generally overlook this, most important in C-H stretch region

  13. Beer-Lambert Law: A = lc A = Absorbance  = Absorptivity l = Pathlength c = Concentration Peak Heights An overlay of 5 spectra of Isopropanol (IPA) in water. IPA Conc. varies from 70% to 9%. Note how the absorbance changes with concentration. • The size (intensity) of absorbance bands depend upon molecular concentration and sample thickness (pathlength) • The Absorptivity () is a measure of a molecule’s absorbance at a given wavenumber normalized to correct for concentration and pathlength – but as shown can be concentration dependent if molecules interact

  14. Peak Widths Water Water • Peak Width is Molecule Dependent • Strong Molecular Interactions = Broad Bands • Weak Molecular Interactions = Narrow Bands Benzene

More Related