1 / 20

Contribution of Satellite Laser Ranging results to Lunar Laser Ranging analysis.

Contribution of Satellite Laser Ranging results to Lunar Laser Ranging analysis. Journées 2005 Systèmes de Référence Spatio-Temporels “Earth dynamics and reference systems: five years after the adoption of the IAU 2000 Resolutions”. Warsaw, 19-21 September 2005.

aric
Download Presentation

Contribution of Satellite Laser Ranging results to Lunar Laser Ranging analysis.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Contribution of Satellite Laser Ranging results to Lunar Laser Ranging analysis. Journées 2005 Systèmes de Référence Spatio-Temporels “Earth dynamics and reference systems: five years after the adoption of the IAU 2000 Resolutions” Warsaw, 19-21 September 2005 S. Bouquillon, J. Chapront & G. Francou

  2. Laser Ranging Techniques Satellite • t0 (emission date) • t1 (reception date) => distance (Earth-Satellite-Earth) ≈ t/c≈(t0-t1)/c Lageos

  3. Laser Ranging Techniques Moon • t0 (emission date) • t1 (reception date) => distance (Earth-Moon-Earth) ≈ t/c≈(t0-t1)/c

  4. Laser Ranging Techniques Moon’s retro-reflectors Lunakhod 1 (lost) Lunakhod 2

  5. Laser Ranging Stations (ILRS) Satellite laser ranging station Lunar laser ranging station Grasse Fort-Davis

  6. Position Time Series of Grasse Station (Coulot et al., 2003)* * D. Coulot, P. Berio, P.exertier, O. Laurain: SF2A-2003: Semaine de l'Astrophysique Française, Conference Series, p. 51.

  7. Position Time Series of Grasse Station in ITRF 2000

  8. Analysis of Position Time Series of Laser station of Grasse Frequencies Analysis (FAMOUS) X = 0.00211 + 0.00119*t – 0.00336*cos( x ) – 0.00391 *sin( x ) Period of x = 1.0324 (± 0.0249) years ( Signal/Noise =4.7) ---------------------------------------------------------------------------------------------------------------------------------------------- Y = 0.00190 + 0.00147*t – 0.00403*cos( y ) – 0.00159*sin( y ) Period ofy = 0.9944 (± 0.0251) years( Signal/Noise =4.0) ---------------------------------------------------------------------------------------------------------------------------------------------- Z = 0.01343 - 0.00003*t – 0.00694*cos( z ) – 0.00263*sin( z ) Period ofz = 1.0584 (± 0.0694) years( Signal/Noise =4.9) Model 1 Weighted Least Squares MODEL 2 X = 0.00104 + 0.00173*t – 0.00357*cos( ) – 0.00353 sin( ) ---------------------------------------------------------------------------------------------------------------------------------------------- Y = 0.00327 + 0.00103*t – 0.00399*cos(  ) – 0.00100*sin(  ) ---------------------------------------------------------------------------------------------------------------------------------------------- Z = 0.01385 - 0.00057*t – 0.00517*cos( ) – 0.00415*sin( ) Period of fixed to one year Model 2 (t in years from J2000)

  9. Models for Position Time Series of Laser Station of Grasse Model 1 Model 2

  10. Position Time Series of Grasse Station in « Local Reference Frame » Zenith (m) (m) (m) West South

  11. Lunar Laser Ranging O-C (Grasse station)

  12. One year Signal in Lunar Laser Ranging O-C (Grasse station) Position of Grasse Station : ITRF 2000 (O-C)an = 0.02266 – 0.01028*t – 0.00913*cos( ) + 0.00139*sin( ) Period of .0510 (± 0.0140) years ( Signal/Noise =3.06) Position of Grasse Station : ITRF 2000 + MODEL 1 (O-C)an = 0.02570 – 0.00843*t – 0.01224*cos( ) – 0.00508*sin( ) Period of = 1.0358 (± 0.0088) years ( Signal/Noise =3.62)

  13. One year Signal in Lunar Laser Ranging O-C (Grasse station) Position of Grasse Station : ITRF 2000 (O-C)an = 0.02266 – 0.01028*t – 0.00913*cos( ) + 0.00139*sin( ) Period of .0510 (± 0.0140) years ( Signal/Noise =3.06) Position of Grasse Station : ITRF 2000 + MODEL 2 (O-C)an = 0.02522 – 0.00836*t – 0.01218*cos( ) – 0.00565*sin( ) Period of = 1.0228 (± 0.0084) years ( Signal/Noise =3.73)

  14. Position Time Series of Fort Davis Station (Coulot et al., 2003)* * D. Coulot, P. Berio, P.exertier, O. Laurain: SF2A-2003: Semaine de l'Astrophysique Française, Conference Series, p. 51.

  15. Position Time Series of Fort-Davis Station in ITRF 2000

  16. Analysis of Position Time Series of Laser Station of Fort-Davis Frequencies Analysis (FAMOUS) X = 0.00026 – 0.00256*cos( x1 ) – 0.00114 *sin( x1 ) Period of x1 = 1.6933 years ( Signal/Noise = 4) – 0.00251*cos( x2 ) + 0.00116*sin( x2 ) Period of x2 = 0.5064 years ( Signal/Noise = 3.64) --------------------------------------------------------------------------------------------------------------------------------------------------------------- Y = 0.00636 + 0.00578*cos( y1 ) – 0.00221*sin( y1 ) Period ofy1 = 2.2079 years( Signal/Noise = 7.13) + 0.00193*cos( y2 ) – 0.00459*sin( y2 ) Period ofy2 = 1.3266 years( Signal/Noise = 5.7) – 0.00359*cos( y3 ) Period ofy3 = 0.9596 years( Signal/Noise = 3.5) --------------------------------------------------------------------------------------------------------------------------------------------------------------- Z = 0.01364 – 0.00237*cos( z1 ) – 0.00434*sin( z1 ) Period ofz1 = 1.5321 years( Signal/Noise = 3.5)

  17. Model for Position Time Series of Laser Station of Fort-Davis

  18. Position Time Series of Fort-Davis Station in « Local Reference Frame » Zenith West South

  19. Lunar Laser Ranging O-C (Fort-Davis station)

  20. CONCLUSION Justification of this analysis: Position times series of laser stations (Coulot et al.) and Lunar Laser Ranging (LLR) observations are gotten with * the same instruments (Grasse and Fort-Davis instruments), * the same laser ranging technique , * and during the same period of time (between 1993-2005). The amplitudes of variations of positions of laser stations are important (for Grasse : around 2 cm). This first analysis shows that: Taking into account of local variations of Laser Stations do not improve the RMS of LLR residus because of larger effects not-well modelized as * Lunar Librations, * Orientations of Reflectors, * Atmosphere effects * ... One result: The time’s derivative coefficient of LLR residus (O-C) is improved (reduced of 2mm/years) between 1998-2004 by taking into account of Coulot’s series.

More Related