1 / 14

Article : Parlati et al. 2002 PNAS 99 : 5424-5427

Article : Parlati et al. 2002 PNAS 99 : 5424-5427 1. Sur le site des données génomiques de la levure http://www.yeastgenome.org/ Rechercher le gène codant pour la syntaxine 5 ‘ Sed5 ’ Quel est le phénotype du mutant nul ?

ariel-doyle
Download Presentation

Article : Parlati et al. 2002 PNAS 99 : 5424-5427

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Article : Parlati et al. 2002 PNAS 99 : 5424-5427 1. Sur le site des données génomiques de la levure http://www.yeastgenome.org/ Rechercher le gène codant pour la syntaxine 5 ‘Sed5’ Quel est le phénotype du mutant nul ? 2. Dans l’expérience rapportée sur la figure 1, quels complexes de t-SNARE ont été préparés ? Avec quelles v-SNARE sont ils testés ? 3. Quels sont les deux complexes de SNAREs auxquels Sed5 prend part ? 4. Sur la Fig.2, que désignent GST-Sed5 et Sft1c ? 5. Que prouvent les différents éléments de la Fig.2 ? 6. Quel renseignement supplémentaire apporte la Fig.3 ? 7. Que montre la Fig.5A ? 8. Sur la Fig.5B, pourquoi les complexes de SNAREs sont immunoprécipités à partir de mutants thermosensibles sec18 ? Que prouve cette expérience ? 9. A quoi peuvent servir deux complexes de SNAREs dans l’appareil de Golgi ? Cf Volchuk et al. Mol. Biol. Cell 2004, 15: 1506-18

  2. Les SNAREs catalysent la fusion membranaire Sutton et al. 1998 Nature 395: 347-353 Assemblage et dissociation du complexe de SNAREs

  3. Fig.1 Parlati et al. 2002 PNAS 99 : 5424-5427

  4. Fig.2 Fig.3 Parlati et al. 2002 PNAS 99 : 5424-5427

  5. Fig.5 Sed5 Bos1 Sec22 Bet1 Sed5 Ykt6 Gos1 Sft1 Parlati et al. 2002 PNAS 99 : 5424-5427

  6. Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack Volchuk et al. Mol. Biol. Cell 2004, 15: 1506-18 syntaxin 5 Sed5 membrin Bos1 ERS24 Sec22 rBet1 Bet1 syntaxin 5 Sed5 mYkt6 Ykt6 GOS28 Gos1 GS15 Sft1

  7. Rab6 budding ARF1 SNARE dissociation NSF, SNAP SNARE dissociation NSF, SNAP budding ARF6 Rab1 Sft1 Sed5 Gos1 Ykt6 Sed5 Bos1 Sec22 Bet1 trans-Golgi cis-Golgi

  8. Fig.4 Syntaxin regulation inactive active primed by Sft1p

  9. Article by Karatekin et al. (2010): A fast, single-vesicle fusion assay mimics physiological SNARE requirements. PNAS 107 : 3517–3521 1. Write down the chemical structure of poly(ethylene glycol) (PEG). 2. Describe Fig. 1 A-D 3. Why is a gaussian fit used in Fig. 1E ? 4. Why does the variance of the Gaussian fits, σ2, increase linearly with time after fusion ? 5. Explain how the normalized fusion rate is calculated (Fig. 2A). 6. What does Fig. 2B prove ? 7. Describe Fig 3. A-C. 8. What is the purpose of Fig. 3D ? 9. What does Fig. 4 show ? 10. According to the authors, why are several SNARE complexes necessary to trigger vesicle-membrane fusion ? 11. Explain the logics of the last paragraph of the discussion.

More Related