200 likes | 391 Views
Weakly nonlocal nonequilibrium thermodynamics – fluids and beyond Peter Ván BCPL, University of Bergen, Bergen and RMKI , Department of Theoretical Physics , Budapest. Introduction Second Law Weak nonlocality Ginzburg-Landau equation Schrödinger-Madelung equation
E N D
Weakly nonlocal nonequilibrium thermodynamics –fluids and beyond Peter Ván BCPL, University of Bergen, Bergen andRMKI, Department of Theoretical Physics, Budapest • Introduction • Second Law • Weak nonlocality • Ginzburg-Landau equation • Schrödinger-Madelung equation • Digression: Stability and statistical physics • Discussion
Nonequilibrium thermodynamics science of temperature Thermodynamics science of macroscopic energy changes Thermodynamics • general framework of any • Thermodynamics (?) macroscopic continuum • theories • General framework: • Second Law • fundamental balances • objectivity - frame indifference reversibility – special limit
Nonlocalities: Restrictions from the Second Law. change of the entropy current change of the entropy Change of the constitutive space
Basic state, constitutive state and constitutive functions: Heat conduction – Irreversible Thermodynamics 1) • basic state: • (wanted field:T(e)) • constitutive state: • constitutive functions: Fourier heat conduction: But: Guyer-Krumhansl Cattaneo-Vernote ???
Internal variable 2) • basic state: • constitutive state: • constitutive function: A) Local state - relaxation B) Nonlocal extension - Ginzburg-Landau e.g.
Fluid mechanics 3) • basic state: • constitutive state: • constitutive function: Local state – Euler equation Nonlocal extension - Navier-Stokes equation: But: Korteweg fluid
Irreversible thermodynamics – traditional approach: • basic state: • constitutive state: • constitutive functions: J= Solution! currents andforces Heat conduction: a=e
1 2 Weakly nonlocal internal variables Ginzburg-Landau (variational): • Variational (!) • Second Law?
Ginzburg-Landau (thermodynamic, non relocalizable) constitutive state space constitutive functions Liu procedure (Farkas’s lemma)
constitutive state space Liu equations:
Korteweg fluids (weakly nonlocal in density, second grade) basic state constitutive state constitutive functions Liu procedure (Farkas’s lemma):
reversible pressure Potential form: Euler-Lagrange form Variational origin
(Fisher entropy) Spec.: Schrödinger-Madelung fluid Potential form: Bernoulli equation Schrödinger equation
R1: Thermodynamics = theory of material stability • In quantum fluids: • There is a family of equilibrium (stationary) solutions. • There is a thermodynamic Ljapunov function: semidefinite in a gradient (Soboljev ?) space
R2: Weakly nonlocal statistical physics: Entropy is unique under physically reasonable conditions. • Extensivity (mean, density) • Isotropy • Additivity Boltzmann-Gibbs-Shannon
Discussion: • Applications: • heat conduction (Guyer-Krumhansl), Ginzburg-Landau, Cahn-Hilliard, one component fluid (Schrödinger-Madelung, etc.), two component fluids (gradient phase trasitions), … , weakly nonlocal statistical physics,… • ? Korteweg-de Vries, mechanics (hyperstress), … • Dynamic stability, Ljapunov function? • Universality – independent on the micro-modell • Constructivity – Liu + force-current systems • Variational principles: an explanation • Thermodynamics – theory of material stability
References: • Ván, P., Exploiting the SecondLaw in weakly nonlocal continuum physics, PeriodicaPolytechnica, Ser. Mechanical Engineering, 2005, 49/1, p79-94, (cond-mat/0210402/ver3). • Ván, P. and Fülöp, T., Weakly nonlocal fluid mechanics - the Schrödingerequation, Proceedings of the Royal Society,London A, 2006, 462, p541-557, (quant-ph/0304062). • P. Ván and T. Fülöp. Stability of stationary solutions of the Schrödinger-Langevin equation. Physics Letters A, 323(5-6):374(381), 2004. (quant-ph/0304190) • Ván, P., Weakly nonlocalcontinuum theories of granular media: restrictions from theSecond Law, International Journal of Solids andStructures, 2004, 41/21, p5921-5927, (cond-mat/0310520). • Cimmelli, V. A. and Ván, P., The effects of nonlocality on the evolution of higher order fluxes in non-equilibrium thermodynamics, Journal of Mathematical Physics, 2005, 46, p112901, (cond-mat/0409254). • V. Ciancio, V. A. Cimmelli, and P. Ván. On the evolution of higher order fluxes in non-equilibrium thermodynamics. Mathematical and Computer Modelling, 45:126(136), 2007. (cond-mat/0407530). • P. Ván. Unique additive information measures - Boltzmann-Gibbs-Shannon, Fisher and beyond. Physica A, 365:28(33), 2006. (cond-mat/0409255) • P. Ván, A. Berezovski, and Engelbrecht J. Internal variables and dynamic degrees of freedom.2006. (cond-mat/0612491)