350 likes | 638 Views
The Role of Chemistry in Innovation Chemistry for Future Energy Supply. K. Wagemann, DECHEMA e.V. Two hot topics in the present political discussions:. Energy Supply Climate Change (Adaptation & Mitigation). Energy in the SusChem Implementation Action Plan. Energy
E N D
The Role of Chemistry in InnovationChemistry for Future Energy Supply K. Wagemann, DECHEMA e.V.
Two hot topics in the present political discussions: Energy Supply Climate Change (Adaptation & Mitigation)
Energy in the SusChem Implementation Action Plan • Energy • Alternative energy sources • Photovoltaic • Fuels production from biomass • Fuel cells • (Metal)nanoparticles as fuel • Wind power • Energy conservation • Efficient lighting • Insulation • Energy storage • Batteries • Gas storage • Supercapacitors
Energy in the SusChem-Deutschland IAP • Photovoltaics • Fuel cells • Efficient use of energy - inorganic LEDs • Efficient use of waste heat from industrial plants • Li-Ion batteries for stationary and mobile applications • Super caps • H2 production and storage • Exhaust gas treatment and catalysis • Light weight materials • Biobutanol
Chemistry and Energy • German Coordination Group „Chemical aspects of energy research“: • DECHEMA - Gesellschaft für Chemische Technik und Biotechnologie e.V. • DBG – Deutsche Bunsen Gesellschaft für Physikalische Chemie e.V • GDCh – Gesellschaft Deutscher Chemiker e.V. • DGMK – Deutsche Wissenschaftliche Gesellschaftfür Erdöl, Erdgas und Kohle e.V. • VDI-GVC – VDI-Gesellschaft Verfahrenstechnikund Chemieingenieurwesen • VCI – Verband der Chemischen Industrie e.V.
Position PaperThesis • The demand for chemical solutions will increase: • Fuel cells: Catalysts, Electrolytes, Membranes • Solar cells: Organic, Polymeric, Easy to Process Systems • Batteries: Electrodes, Electrolytes • Thermoelectrica: Nanostructured Materials • CO2-Sequestration: Absorption, Chemical Conversion • Heavy Oils and Coal (and Biomass): Conversion to Fuels
The role of chemistry Energy Supply Energy storage Fuels Bioenergy Photovoltaics Fuel cells Thermoelectrics Collectors H2-Production Mobile batteries Stationary batteries Supercaps Chemicals CO2-Utilisation OLEDs Superconductors Lightweight materials Thermal insulation Catalysis Microreaction techn. New reaction media Process integration Energy efficientproductionprocesses Efficient use of energy
Backup Backup
Chemistry-related CO2-Emissions Chemistry Industry (total) = 861 Mio. t CO2 Energy Numbers of 2004, Source: Ministry of Economics and Technology
Production of Hydrogen • Alternatives • Direct thermal water splitting (without catalyst: T > 2.500°C) • catalytic • redoxcatalytic • Photocatalytic water splitting at solid surfaces • Biomimetic photosystems in liquid phase (Ru-Systems) • Biohydrogen
Photovoltaics • Thin film solar cells (a-Si, µCSi, CdTe ...) • Multibandgap-cells Alternatives: • Organic semiconductor systems • Photoelectrochemical cells(Grätzel-Cells)
Materials for Collectors • Coatings today: • Black Chromium • Black Nickel Efficient, but processing (galvanisation) not environmentally benign • Coatings Future: • Al2N3 • Carbides • TiNOx Better efficiency (absorption and reflection) but processing costs high
Thermoelectrical Devices • Principle • Materials: Bi2Te3, Bi2Se3, Sb2Te (RT) / PbTe-, SiGe-Alloys (550 – 800 K) • Energy Source: In general lost heat • Applications: • Energy independent micro sensors (“self-powered sensors”) • “self-powered micro-devices” • Auxiliary power systems in automotives • Cooling of Photovoltaic devices
Thermoelectrical Devices Future: Higher Efficiency using nanostructured materials
CO2-Sequestration& Utilisation Carbon Capture and Storage Technologies
CO2-Sequestration • Research Topics (Chemistry related) • Coal Gasification • CO2-Capture • Absorption • Membranes • Materials / Corrosion(CO2(l) / H2O / High Salt Concentration)
CO2-Utilisation • Energy Storage Systems • Dry Reforming • CO2 as C1-Building Block • Artificial Photosynthesis • Microalgae–Cultivation • “Better Plants”
Japan MeOH CO2 Australia CO2-Utilisation ZnCrO-catalyst • Energy Storage SystemsCO2 + H2 CH3OH + H2O • NEDO-Project, Japan (since early 90ies)
CO2-UtilisationSteamless Carbon Dioxide Reforming (Dry Reforming) • CO2 + CH4 2CO + 2H2 • Idea: Exploitation of remote gas fields (stranded gas) • Discussion Platforms: • Eranet Chemistry • SusChem-D: September Workshop
CO2-UtilisationArtificial Photosynthesis • Light harvesting supramolecular components (Balzani, Bologna)
CO2-UtilisationArtificial Photosynthesis • General Problems • Thermal – Stability • Photo(oxidative)-Stability • Light-Harvesting • European Network: Solar-H (http://www.fotomol.uu.se/Forskning/Biomimetics/solarh)
CO2-UtilisationCO2 as C1 Building Block • Problem: Inertness CO2 O O C C R2O OR1 R2 OR1 Ester Carbonates R3 R4 C R1O OR2 Acetales
CO2-UtilisationCO2 as C1 Building Block Activation by Carboanhydrase: CO2 + H2O HCO3- + H+ Aktive Center of Carboanhydrase
CO2-UtilisationActivation of CO2 • Active Species: Carbamate M.Antonietti, Angew. Chemie 2007, 119, 2773 ff
CO2-Utilisation Biorefineries • Bioethanol/BioDiesel (1st Generation) • Biofuels 2nd Generation • BTL ( FT-Catalysts) • Lignocellulose Ethanol • Biogas • Chemical Building Blocks
CO2-Utilisation Biogas One Alternative: Zinkoxid H2S+ZnO H2O+ZnS 200-400 °C (!) H2S-content: ppb