460 likes | 500 Views
A guide on SnPM thresholding without assumptions, focusing on permutation tests to control false positives. Understand the statistical concepts and methods for nonparametric inference, with relevant examples and discussions. Learn about Familywise Error Rate (FWER), MCP solutions, and controlling FWER with permutation tests. Explore different statistics, such as smoothed variance t-statistic, in nonparametric null distributions for robust analysis. Enhance your knowledge and skills in statistical analysis with this comprehensive resource.
E N D
Statistical Nonparametric Mapping - SnPMThresholding without (m)any assumptions Thomas Nichols, Ph.D. Director, Modelling & GeneticsGlaxoSmithKline Clinical Imaging Centre http://www.fmrib.ox.ac.uk/~nichols FIL SPM Course May 15, 2008
Overview • Multiple Comparisons Problem • Which of my 100,000 voxels are “active”? • SnPM • Permutation test to find threshold • Control chance of any false positives (FWER)
5% Parametric Null Distribution 5% Nonparametric Null Distribution Nonparametric Inference • Parametric methods • Assume distribution ofstatistic under nullhypothesis • Needed to find P-values, u • Nonparametric methods • Use data to find distribution of statisticunder null hypothesis • Any statistic!
Permutation TestToy Example • Data from V1 voxel in visual stim. experiment A: Active, flashing checkerboard B: Baseline, fixation 6 blocks, ABABAB Just consider block averages... • Null hypothesis Ho • No experimental effect, A & B labels arbitrary • Statistic • Mean difference
Permutation TestToy Example • Under Ho • Consider all equivalent relabelings
Permutation TestToy Example • Under Ho • Consider all equivalent relabelings • Compute all possible statistic values
Permutation TestToy Example • Under Ho • Consider all equivalent relabelings • Compute all possible statistic values • Find 95%ile of permutation distribution
Permutation TestToy Example • Under Ho • Consider all equivalent relabelings • Compute all possible statistic values • Find 95%ile of permutation distribution
Permutation TestToy Example • Under Ho • Consider all equivalent relabelings • Compute all possible statistic values • Find 95%ile of permutation distribution -8 -4 0 4 8
Permutation TestStrengths • Requires only assumption of exchangeability • Under Ho, distribution unperturbed by permutation • Allows us to build permutation distribution • Subjects are exchangeable • Under Ho, each subject’s A/B labels can be flipped • fMRI scans not exchangeable under Ho • Due to temporal autocorrelation
Permutation TestLimitations • Computational Intensity • Analysis repeated for each relabeling • Not so bad on modern hardware • No analysis discussed below took more than 3 hours • Implementation Generality • Each experimental design type needs unique code to generate permutations • Not so bad for population inference with t-tests
MCP Solutions:Measuring False Positives • Familywise Error Rate (FWER) • Familywise Error • Existence of one or more false positives • FWER is probability of familywise error • False Discovery Rate (FDR) • R voxels declared active, V falsely so • Observed false discovery rate: V/R • FDR = E(V/R)
FWER MCP Solutions • Bonferroni • Maximum Distribution Methods • Random Field Theory • Permutation
FWER MCP Solutions: Controlling FWER w/ Max • FWER & distribution of maximum FWER = P(FWE) = P(One or more voxels u | Ho) = P(Max voxel u | Ho) • 100(1-)%ile of max distn controls FWER FWER = P(Max voxel u | Ho) u
FWER MCP Solutions • Bonferroni • Maximum Distribution Methods • Random Field Theory • Permutation
5% Parametric Null Max Distribution 5% Nonparametric Null Max Distribution Controlling FWER: Permutation Test • Parametric methods • Assume distribution ofmax statistic under nullhypothesis • Nonparametric methods • Use data to find distribution of max statisticunder null hypothesis • Again, any max statistic!
Permutation TestOther Statistics • Collect max distribution • To find threshold that controls FWER • Consider smoothed variance t statistic • To regularize low-df variance estimate
mean difference Permutation TestSmoothed Variance t • Collect max distribution • To find threshold that controls FWER • Consider smoothed variance t statistic t-statistic variance
Permutation TestSmoothed Variance t • Collect max distribution • To find threshold that controls FWER • Consider smoothed variance t statistic SmoothedVariancet-statistic mean difference smoothedvariance
Active ... ... yes Baseline ... ... D UBKDA N XXXXX no Permutation TestExample • fMRI Study of Working Memory • 12 subjects, block design Marshuetz et al (2000) • Item Recognition • Active:View five letters, 2s pause, view probe letter, respond • Baseline: View XXXXX, 2s pause, view Y or N, respond • Second Level RFX • Difference image, A-B constructedfor each subject • One sample, smoothed variance t test
Maximum Intensity Projection Thresholded t Permutation DistributionMaximum t Permutation TestExample • Permute! • 212 = 4,096 ways to flip 12 A/B labels • For each, note maximum of t image .
Permutation TestExample • Compare with Bonferroni • = 0.05/110,776 • Compare with parametric RFT • 110,776 222mm voxels • 5.15.86.9mm FWHM smoothness • 462.9 RESELs
378 sig. vox. Smoothed Variance t Statistic,Nonparametric Threshold Test Level vs. t11 Threshold uRF = 9.87uBonf = 9.805 sig. vox. uPerm = 7.67 58 sig. vox. t11Statistic, Nonparametric Threshold t11Statistic, RF & Bonf. Threshold
Reliability with Small Groups • Consider n=50 group study • Event-related Odd-Ball paradigm, Kiehl, et al. • Analyze all 50 • Analyze with SPM and SnPM, find FWE thresh. • Randomly partition into 5 groups 10 • Analyze each with SPM & SnPM, find FWE thresh • Compare reliability of small groups with full • With and without variance smoothing .
SPM t11: 5 groups of 10 vs all 505% FWE Threshold T>10.93 T>11.04 T>11.01 10 subj 10 subj 10 subj 2 8 11 15 18 35 41 43 44 50 1 3 20 23 24 27 28 32 34 40 9 13 14 16 19 21 25 29 30 45 T>10.69 T>10.10 T>4.66 10 subj 10 subj all 50 4 5 10 22 31 33 36 39 42 47 6 7 12 17 26 37 38 46 48 49
SnPM t: 5 groups of 10 vs. all 505% FWE Threshold T>9.00 Arbitrary thresh of 9.0 T>7.06 T>8.28 T>6.3 10 subj 10 subj 10 subj 2 8 11 15 18 35 41 43 44 50 1 3 20 23 24 27 28 32 34 40 9 13 14 16 19 21 25 29 30 45 T>6.49 T>6.19 T>4.09 10 subj 10 subj all 50 4 5 10 22 31 33 36 39 42 47 6 7 12 17 26 37 38 46 48 49
SnPM SmVar t: 5 groups of 10 vs. all 505% FWE Threshold T>9.00 all 50 Arbitrary thresh of 9.0 T>4.69 T>5.04 T>4.57 10 subj 10 subj 10 subj 2 8 11 15 18 35 41 43 44 50 1 3 20 23 24 27 28 32 34 40 9 13 14 16 19 21 25 29 30 45 T>4.84 T>4.64 10 subj 10 subj 4 5 10 22 31 33 36 39 42 47 6 7 12 17 26 37 38 46 48 49
Conclusions • t random field results conservative for • Low df & smoothness • 9 df & 12 voxel FWHM; 19 df & < 10 voxel FWHM(based on Monte Carlo simulations, not shown) • Bonferroni not so bad for low smoothness • Nonparametric methods perform well overall
Monte Carlo Evaluations • What’s going wrong? • Normality assumptions? • Smoothness assumptions? • Use Monte Carlo Simulations • Normality strictly true • Compare over range of smoothness, df • Previous work • Gaussian (Z) image results well-validated • t image results hardly validated at all!
Monte Carlo EvaluationsChallenges • Accurately simulating t images • Cannot directly simulate smooth t images • Need to simulate smooth Gaussian images ( = degrees of freedom) • Accounting for all sources of variability • Most M.C. evaluations use known smoothness • Smoothness not known • We estimated it residual images
Autocorrelation Function Monte Carlo Evaluations • Simulated One Sample T test • 32x32x32 Images (32767 voxels) • Smoothness: 0, 1.5, 3, 6,12 FWHM • Degrees of Freedom: 9, 19, 29 • Realizations: 3000 • Permutation • 100 relabelings • Threshold: 95%ile of permutation distn of maximum • Random Field • Threshold: { u : E(u| Ho) = 0.05 } • Also Gaussian FWHM
Inf. df FamilywiseErrorThresholds • RFT valid but conservative • Gaussian not so bad (FWHM >3) • t29 somewhat worse 29df more
Inf df FamilywiseRejectionRates • Need > 6 voxel FWHM 29 df more
19 df FamilywiseErrorThresholds • RF & Perm adapt to smoothness • Perm & Truth close • Bonferroni close to truth for low smoothness 9 df more
19 df FamilywiseRejectionRates • Bonf good on low df, smoothness • Bonf bad for high smoothness • RF only good for high df, high smoothness • Perm exact 9 df more
19 df FamilywiseRejectionRates • Smoothness estimation is not (sole) problem 9 df cont
Performance Summary • Bonferroni • Not adaptive to smoothness • Not so conservative for low smoothness • Random Field • Adaptive • Conservative for low smoothness & df • Permutation • Adaptive (Exact)
Understanding Performance Differences • RFT Troubles • Multivariate Normality assumption • True by simulation • Smoothness estimation • Not much impact • Smoothness • You need lots, more at low df • High threshold assumption • Doesn’t improve for 0 less than 0.05 (not shown) HighThr
Conclusions • t random field results conservative for • Low df & smoothness • 9 df & 12 voxel FWHM; 19 df & < 10 voxel FWHM • Bonferroni surprisingly satisfactory for low smoothness • Nonparametric methods perform well overall • More data and simulations needed • Need guidelines as to when RF is useful • Better understand what assumption/approximation fails
References • TE Nichols and AP Holmes.Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples. Human Brain Mapping, 15:1-25, 2002. • http://www.sph.umich.edu/~nichols Data ThrRslt MC ThrRslt MC P Rslt EstSmCf
Permutation TestExample • Permute! • 212 = 4,096 ways to flip A/B labels • For each, note max of smoothed variance t image . Permutation DistributionMax Smoothed Variance t Maximum Intensity Projection Threshold Sm. Var. t