300 likes | 663 Views
Por fin llegamos al primer átomo !!!. La energía potencial de un sistema protón-electrón es electrostática: Usamos la ecuación de Schr ö dinger tridimensional, independiente en el tiempo (que ya bastante dificil quedará). Para átomos “hidrogenoides” (He + or Li ++ )
E N D
Por fin llegamos al primer átomo !!! La energía potencial de un sistema protón-electrón es electrostática: Usamos la ecuación de Schrödinger tridimensional, independiente en el tiempo (que ya bastante dificil quedará). Para átomos “hidrogenoides” (He+ or Li++) Se reemplaza e2 por Ze2 (Z es el numero atomico).
Coordenadasesféricas para poder hacer algo: Transformando a coordenadas esféricas la ecuación queda:
Separar variables Esto funciona, una vez terminado uno verifica que no de algo mal Esto da soluciones para la parte radial y para la parte angular por separado, las soluciones están en la siguiente diapo: La funcion de onda y depende del radio ry de los ángulosq yf. Para simplificar la matemática, suponemos que la funcion es “separable”, o sea que:
La energía solamente depende de la función de onda radial (numero cuántico principal n) • Hay muchas funciones de onda válidas estacionarias, cada una tiene un determinado numero cuentico n. • El valor para cada energía es negativo (atraccion) y esta dado por: Los orbitales 4s, 4p, 4d y 4f del H tienen la misma energía. N=4
3/2 æ ö 1 1 -r/a 0 ç ÷ Y = e 100 ç ÷ p a è ø 0 La y de energía mas baja, nuestroamigo el orbital 1s Máxima probabilidad de encontrar el electrón es pegadito al núcleo !!
En realidad, es mejor ver la probabilidad RADIAL,o sea, mirando por capas como una cebolla.Despues de todo, las capas de afuera son mas grandes,asi que la probabilidad es mayor ahi. Maximo radial
Orbitales s Adentro de esta bola está el 90% de la probabilidad nodos
Orbitales p Nodo en el núcleo
Comparacion de la parte radial de los orbitales 2s y 2p. El 2p esta calculado en la dirección en que hay algo, recordar que hay dos direcciones vacías, sin probabilidad.
El siguiente : Helio • Al aparecer mas de un electrón, tenemos que tener en cuenta las • interacciones entre electrones: • Parece simple. Comparemos el sistema del Hidrógeno con el Helio.
Hamiltoniano del Hidrógeno Tiene una energía cinética para el electrón, y una energía potencial debida a la atraccion electrostática (coulombica) entre el electrón y el núcleo La soluciones que vimos daban para las energías: - +
Hamiltoniano del Helio Lo mismo que en el Hidrogeno, pero ademas hay un termino de repulsión entre los dos electrones. Pero no sabemos la distancia entre los electrones !!! El problema es analíticamante irresolublem, solo se pueden encontrar resultados numéricos. Una de las formas de hacerlo es a traves de un método llamado “metodo variacional”. - - ++
El teorema variacional El método variacional permite obtener una energía del sistema basal, sin tener que resolver la ecuación de Schroedinger. Por supuesto, esa energía da mal. El método esta basado en el siguiente teorema: Para cualquier sistema al cual se le aplica el operador hamiltoniano si es una funcion cualquiera, que se porte bien y que satisfaga las condiciones de contorno, entonces se cumple que: Donde E0 es el valor verdadero (desconocido en general) de la energía del estado estacionario válido mas bajo (el basal). Este teorema permite encontrar una cota superior de la energía.
Utilidad práctica del método variacional Uno puede obtener una energía enorme, y eso es una cota superior, pero muy poco útil. Lo bueno es conseguir una cota superior que no sea MUY SUPERIOR al valor verdadero (el que podría calcular si pudiera resolver la ecuación de Schrodinger en forma exacta). La forma es agarrar funciones conocidas (por ejemplo, las y del hidrógeno), y aplicarles un parámetro o mas de uno. Luego se van moviendo esos parámetros hasta que la energía es mínima. Para eso se hace que la derivada siguiente sea igual a cero.
Probemos el metodo variacional con el He Usamos de funciones las mas simples del hidrogeno, las 1s. Son dos, porque el He tiene 2 electrones: Hacemos nuestra funcion total el producto de las dos funciones: Como las funciones 1s ya estan normalizadas:
Lo que usamos entonces es una funcion trucha construida con 2 funciones 1s multiplicadas. Ahora le ponemos un parámetro que multiplique. La forma mas facil es cambiar la carga nuclear Z=2 por un parámetro variable que llamamos z. Podríamos haber puesto a.Z, pero z tiene la ventaja de tener una interpretación física. Como cada electrón apantalla la carga del núcleo, el otro electron ve una carga nuclear “efectiva” menor que 2. El hamiltoniano queda:
Hacemos las integrales Una vez hechas las integrales tenemos que: O sea que:
Ahora minimizamos la energía usandoz Teníamos: Variamos z para minimizar el valor de la integral variacional: La energía variacional es: Esto esta bien, dio menor que 2
¿ Que habrá dado ?Comparemos con el experimento. La forma ultra-trucha habría sido calcular la energía de ionización (o sea la energía del nivel basal) poniendo Z=2 en una ecuacion de energías hidrogenoides para el n=1. E = -Ze2/a0 esto nos da: - 2(13.6) eV = -27.2 eV. Con el método variacional obtuvimos, E = -(27/16)e2/a0 = -(27/16)(13.6) eV = -22.95 eV. La energía de ionización experimental del He is –24.5 eV. The value obtenido por el método variacional es mas cercano al valor real. Y ademas, podemos estar seguros que la energía real es menor. El valor “ultratrucho” es peor, y no nos da seguridad de nada
Resumen El atomo de H es el unico que se puede calcular exactamente. Usamos orbitales tipo H para calcular atomos multielectrónicos, pero eso da muy mal. Podemos zafar usando el metodo variacional, que nos permite tener valores mas cercanos al real, que son siempre mayores que la Energía real.
Hamiltoniano para una molécula • Ahora tenemos: (en orden de dificultad de cálculo) • energía cinética de los electrones • energía cinética de los núcleos • interacción electrostática entre todos los núcleos • interacción electrostática entre los electrones y los núcleos • interacción electrostática de los electrones entre si • Es un bardo, que se resuelve aplicando el metodo variacional o métodos mejores. • Las únicas “moleculas” que se pueden resolver en forma analítica son las que tengan un electrón solo, como H2+
Aproximación de Born-Oppenheimer • Los núcleos son mucho mas pesados que los electrones, se mueven poco y lentamente. En la escala de movimiento de los electrones, estan como “congelados”. • Entonces, ponemos una determinada configuración nuclear “congelada”, Rnuc, y calculamos la funcion de onda el(rel;Rnuc) y la energía. • Despues, cambiamos los núcleos de lugar un poco y volvemos a calcular, si la energía da menor, vamos en el camino correcto (aunque no siempre).