1 / 10

Reguły Bradis-Kryłowa

Reguły Bradis-Kryłowa. Reguły Bradis-Kryłowa: określają zasady zaokrąglania liczb oraz działań na liczbach przybliżonych. Działania na liczbach przybliżonych.

aron
Download Presentation

Reguły Bradis-Kryłowa

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Reguły Bradis-Kryłowa

  2. Reguły Bradis-Kryłowa: określają zasady zaokrąglania liczb oraz działań na liczbach przybliżonych

  3. Działania na liczbach przybliżonych

  4. Przy dodawaniu lub odejmowaniu liczb, wynik końcowy powinien posiadać tyle liczb po przecinku, ile posiada liczba o najmniejszej dokładności, np.: 12.6+7.83≅20.4 lub 128.54-45.7≅82.8

  5. Przy mnożeniu lub dzieleniu liczb, wynik końcowy powinien posiadać tyle cyfr znaczących, ile posiada liczba o najmniejszej liczbie cyfr znaczących, np.: 24.43 · 17.357 ≅ 424.0 lub 0.0054 : 7 ≅ 0.0008

  6. Przy podnoszeniu liczby do potęgi (głównie przy podnoszeniu do kwadratu lub sześcianu), wynik końcowy powinien posiadać tyle cyfr znaczących, ile posiada liczba potęgowana, np.: 26.83³≅19310 (19313.55)

  7. Przy wyciąganiu pierwiastka z liczby (głównie pierwiastka drugiego lub trzeciego stopnia), wynik końcowy powinien posiadać tyle cyfr znaczących, ile posiada liczba pierwiastkowana, np.: √39,34≅6,272.

  8. Liczby będące wynikami pośrednimi zapisujemy, uwzględniając dodatkowo kolejną cyfrę, pomimo powyższych reguł. W końcowym rozwiązaniu dodatkową cyfrę opuszczamy lub zapisujemy mniejszą czcionką.

  9. Jeżeli niektóre dane zawierają więcej znaków dziesiętnych lub liczb znaczących niż pozostałe dane w działaniach (dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie, pierwiastkowanie), wówczas zaokrąglamy je zachowując o jedną cyfrę więcej niż wynika z pierwszych czterech reguł.

  10. Jeżeli chcemy uzyskać wynik końcowy o k cyfrach, to do obliczeń należy brać dane z taką ilością cyfr, które zgodnie z powyższymi regułami w końcowym rozwiązaniu dadzą k+1 cyfr.

More Related