1 / 23

Application for Continuous Health Monitoring using Machine-to-Machine Communications February 2012

Application for Continuous Health Monitoring using Machine-to-Machine Communications February 2012. João Prudêncio. Supervisors: Ana Aguiar, Daniel Lucani. 1. Context. Aging population 1 ; 48% of the US population suffer from at least one chronic ailment 2 ;

arvid
Download Presentation

Application for Continuous Health Monitoring using Machine-to-Machine Communications February 2012

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Application for Continuous Health Monitoring using Machine-to-Machine CommunicationsFebruary 2012 JoãoPrudêncio Supervisors: Ana Aguiar, Daniel Lucani

  2. 1. Context • Aging population 1; • 48% of the US population suffer from at least one chronic ailment 2; • Health care crisis, spending reached 15.5% of GDP by year of 2010 3. Mobile-healthcare 1 World Health Organization. 2004. Active ageing: Towards age-friendly primary health care. WHO Library Cataloguing-in-Publication Data. http://whqlibdoc.who.int/publications/2004/9241592184.pdf (accessed November 22, 2011). 2 D.B. Kendall, K.Tremain, J. Lemieux, and S.R. Levine. 2003. Heatlhy Aging v. Chronic Illness Preparing Medicare for the New Health Care Challenge. Quoted in Shieh, Y.Y.; Tsai, F.Y.; Arash; Wang, M.D.; Lin. 2007. Mobile Healthcare: Opportunities and Challenges. Paper presented at International Conference on the Management of Mobile Business, July 9-11, in Toronto, Canada 3 Centers for Medicare and Medicaid Services (CMS). 2011. National Health Expenditures 2000-2010. http://www.cms.gov/ (accessed November 27, 2001)

  3. 2. Problem • How to monitor the patients in near real time?; • Achieve energy efficiency, security and reliability; • Interoperability 1; • Lack of open solutions for mobile healthcare. 1Shin, Donghoon. 2011. M-healthcare revolution: an e-commerce perspective. Paper presented at First ACIS/JNU International Conference onComputers, Networks, Systems and Industrial Engineering, May 23-25.

  4. 3. Objectives

  5. 4. Systemarchitecture

  6. 5.Exampleofapplications MOTOACTV Motorola. 2011. Motorola brings personalized media and mobile experiences together to meet the exploding consumer demand for video and interactive services. http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/MOTOACTV/MOTOACTV/MOTOACTV-US-EN  (accessed January 20, 2012)

  7. 5.Exampleofapplications • Endomodo Endomondo. 2007. Endomondo is a sports community based on free real-time GPS tracking of running, cycling, etc.http://www.endomondo.com (accessed January 20, 2012)

  8. 6. Machine-to-MachinesCommunications • Communication among Machines without human intervention 1 ; • The most promising solution for the intelligent pervasive applications 1 2; • Standardization is the wise step to enable interoperability and integration of the worldwide systems; • Use cases, service requirements and capabilities of a M2M architecture in an healthcare scenario is currently being developed by ETSI 3. 1 RongxingLu; Xu Li; XiaohuiLiang; XueminShen; XiaodongLin; , "GRS: Thegreen, reliability, andsecurityofemergingmachine to machinecommunications," Communications Magazine, IEEE , vol.49, no.4, pp.28-35, April2011 2GengWu; Talwar, S.; Johnsson, K.; Himayat, N.; Johnson, K.D.; , "M2M: From mobile to embedded internet," Communications Magazine, IEEE , vol.49, no.4, pp.36-43, April2011 3ETSI(TheEuropeanTelecommunications Standards Institute). 2011. Draft ETSI TR 102 732 V0.4.1. Machine to Machine Communications (M2M): Use cases of M2M applications for eHealth. France: TheEuropeanTelecommunications Standards Institute.

  9. 6. Machine-to-MachinesCommunications Shao-YuLien; Kwang-ChengChen; YonghuaLin; , "Towardubiquitousmassiveaccessesin 3GPP machine-to-machinecommunications," Communications Magazine, IEEE , vol.49, no.4, pp.66-74, April 2011

  10. 7. Heartabnormalities • Bradycardia: heart rate lessthan 60 bps; • Tachycardia:heart rate greaterthat 100 bps; • QRS complexes: QRS intervalgreaterthan 120 milisecondsandheart rate greaterthan 100 bps; • Supraventriculartachycardiawithnarrow QRS complexes: QRS intervallessthan 120 milisecondsandheart rate greaterthan 100 bps. Liszka, K.J.; Mackin, M.A.; Lichter, M.J.; York, D.W.; DilipPillai; Rosenbaum, D.S.; , "Keeping a beatontheheart," PervasiveComputing, IEEE , vol.3, no.4, pp. 42- 49, Oct.-Dec. 2004 YonglinRen; Pazzi, R.W.N.; Boukerche, A.; , "Monitoringpatients via a secureand mobile healthcaresystem," WirelessCommunications, IEEE , vol.17, no.1, pp.59-65, February 2010

  11. 8.GeoFencing • Perimeter in a geographic area; • When the user exits the virtual fence an alarm is generated 1 2; • Useful for patients with dementia 3. 1 Armstrong, N.; Nugent, C.D.; Moore, G.; Finlay, D.D.; , "Developingsmartphoneapplications for peoplewithAlzheimer'sdisease," InformationTechnologyandApplicationsinBiomedicine (ITAB), 2010 10th IEEE InternationalConferenceon , vol., no., pp.1-5, 3-5 Nov. 2010 2Bilgic, HasanTahsin; Alkar, Ali Ziya; , "A securetrackingsystem for GPS-enabled mobile phones," InformationTechnologyandMultimedia (ICIM), 2011 InternationalConferenceon , vol., no., pp.1-5, 14-16 Nov. 2011 3 Alotaibi, F.D.; Abdennour, A.; Ali, A.A.; , "A Real-TimeIntelligentWireless Mobile StationLocationEstimatorwithApplication to TETRA Network," Mobile Computing, IEEE Transactionson , vol.8, no.11, pp.1495-1509, Nov. 2009

  12. 8.GeoFencing • Ray casting algorithm; • Simplepolygonsnotself-interconnected1. • f(ei ) hasthevalueof: • -1, ifeicrossedup to down; • 1, ifeicrosseddown to up; • 0, ifeinotcrossed . P: P3P4, P4P5, P5P6 and P6P7.F(P) = 1+(-1)+1+(-1) If F = 1 thenit’saninternalpointIf F = 0 thenit’sanexternalpoint Wu Jian; CaiZongyan; , "A method for the decision of a point whether in or not in polygon and self-intersected polygon," Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on , vol.1, no., pp.16-18, 26-28 July 2011

  13. 8.GeoFencing

  14. 9.Human Activity Recognition Khan, A. M.; Lee, Y. K.; Kim, T.-S.; , "Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets," Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE , vol., no., pp.5172-5175, 20-25 Aug. 2008 Khan, A.M.; Young-Koo Lee; Lee, S.Y.; Tae-Seong Kim; , "A Triaxial Accelerometer-Based Physical-Activity Recognition via Augmented-Signal Features and a Hierarchical Recognizer," Information Technology in Biomedicine, IEEE Transactions on , vol.14, no.5, pp.1166-1172, Sept. 2010

  15. 9.Human Activity Recognition AutoregressiveModeling • Linear predictionmethods: predictsthe output basedonprevious inputs1 2; • Finiteimpulse response (FIR) filter; • Methods: Theleastsquares; Yule-Walker ; Burg’s3 4. Y(t) original signal a(i) unknowncoefficients P theorderofthemodel E(t) residual error 1C.JenningsM.KulahciMontgomery,C.Douglas. IntroductiontoTime Series AnalysisandForecasting.JohnWileyandSons.Inc.,first edition,2008 2 Khan, A.M.; Young-KooLee; Lee, S.Y.; Tae-SeongKim; , "A TriaxialAccelerometer-BasedPhysical-ActivityRecognition via Augmented-SignalFeaturesand a HierarchicalRecognizer," InformationTechnologyinBiomedicine, IEEE Transactionson , vol.14, no.5, pp.1166-1172, Sept. 2010 3H.SchoonewelleM.J.L.DeHoon,T.H.J.J.Van Der HagenandH.VanDam. WhyYule-Walkershouldnotbeused for autoregressivemodelling. 4 K. Roth, I. Kauppinen,P.A.A.Esquef,andV.Valimaki. FrequencywarpedBurg’smethod for AR-modeling.

  16. 9.Human Activity Recognition • Signal Magnitude Area (SMA) • Analyzethe magnitude ofthevariationsofthesignal; • Distinguishbetweenstaticanddynamicactivities1 2. Where x(i), y(i), z(i) : accelerationinthex,y,zaxisatthetime i 1 Khan, A. M.; Lee, Y. K.; Kim, T.-S.; , "Accelerometersignal-basedhumanactivityrecognitionusingaugmentedautoregressivemodelcoefficientsand artificial neural nets," EngineeringinMedicineandBiologySociety, 2008. EMBS 2008. 30th AnnualInternationalConferenceofthe IEEE , vol., no., pp.5172-5175, 20-25 Aug. 2008 2 Khan, A.M.; Young-KooLee; Lee, S.Y.; Tae-SeongKim; , "A TriaxialAccelerometer-BasedPhysical-ActivityRecognition via Augmented-SignalFeaturesand a HierarchicalRecognizer," InformationTechnologyinBiomedicine, IEEE Transactionson , vol.14, no.5, pp.1166-1172, Sept. 2010

  17. 9.Human Activity Recognition TiltAngle • Anglebetweenthe vector ofgravityandthe z axis1 2; • Distinguishbetweenstaticactivities: sittingandlying3. 1 Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G.; , "Implementationof a real-timehumanmovementclassifierusing a triaxialaccelerometer for ambulatorymonitoring," InformationTechnologyinBiomedicine, IEEE Transactionson , vol.10, no.1, pp.156-167, Jan. 2006 2 Do-Un Jeong; Se-Jin Kim; Wan-Young Chung; , "Classification of Posture and Movement Using a 3-axis Accelerometer," Convergence Information Technology, 2007. International Conference on , vol., no., pp.837-844, 21-23 Nov. 2007 3 Veltink, P.H.; Bussmann, HansB.J.; de Vries, W.; Martens, WimL.J.; VanLummel, R.C.; , "Detectionofstaticanddynamicactivitiesusinguniaxialaccelerometers,"RehabilitationEngineering, IEEE Transactionson , vol.4, no.4, pp.375-385, Dec 1996

  18. 9.Human Activity Recognition Newfeaturesproposal Stage 1 Stage 2

  19. 9.Human Activity Recognition Newfeaturesproposal Stage 3 Stage 4

  20. 10.Activity Data Acquisition 6 individuals 10 hoursofactivity

  21. 11. Technologies • Machine-to-Machine Communications • The Extensible Messaging and Presence Protocol (XMPP) • MyContext: Context Framework developedby PT Inovação • Android SDK • Web technologies: PHP, HTML, CSS, Javascript • R • Java • Neuroph: Java neural networkframework

  22. 12. Work Plan

  23. Application for Continuous Health Monitoring using Machine-to-Machine CommunicationsFebruary 2012 JoãoPrudêncio Supervisors: Ana Aguiar, Daniel Lucani

More Related