1 / 106

IDEAL GAS: p = RT (11.1) du = c v dT (11.2) dh= c p dT (11.3)

1 st and 2 nd LAWS: Q-W = U Tds = du +pdv (11.10a) Tds = h –vdp (11.10b). IDEAL GAS: p = RT (11.1) du = c v dT (11.2) dh= c p dT (11.3). h = u + RT; dh = du RdT; c p dT = c v dT + RdT; c p = c v + R (11.4). Ideal Gas and s=0. IDEAL GAS + 1 st + 2 nd LAWS

ash
Download Presentation

IDEAL GAS: p = RT (11.1) du = c v dT (11.2) dh= c p dT (11.3)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1st and 2nd LAWS: Q-W = U Tds = du +pdv (11.10a) Tds = h –vdp (11.10b) IDEAL GAS: p = RT (11.1) du = cvdT (11.2) dh= cpdT (11.3) h = u + RT; dh = du RdT; cpdT = cvdT + RdT; cp = cv + R (11.4) Ideal Gas and s=0 IDEAL GAS + 1st + 2nd LAWS ds = du/T + pdv/T = cvdT/T + Rdv/v s2 – s1 = cv ln (T2/T1) + R ln (v2/v1) (11.11a) ds = dh/T - vdp/T = cpdT/T + Rdp/p s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b) s2 – s1 = cv ln (T2/T1) + R ln (v2/v1) = cv ln(p2 1/p12) + (cp-cv) ln (v2/v1) s2 – s1 = cv ln(p2/p1) + cv ln(v2/v1) + cp ln (v2/v1) - cv ln (v2/v1) s2 – s1 = cv ln(p2/p1) + cp ln (v2/v1) (11.11c) (11.20a) (11.20b) (11.20c)

  2. Ideal Gas 5kg; s; p1=300kPa T1=60oC 5kg; s; p2=150kPa T2= ?

  3. Ideal Gas IDEAL GAS + ADIABATIC + REVERSIBLE Tvk-1 = T/(k-1) = c(11.12a) Tp(1-k)/k = c(11.12b) pvk = p/k = c(11.12c) 5kg; s; p1=300kPa T1=60oC isentropic 5kg; s; p2=150kPa T2= ?

  4. Tp(1-k)/k = c(11.12b) T1(Ko)p1(1-k)/k = T2(Ko)p2(1-k)/k T1 = 333K; p1 = 300,000 Pa T2 = 273K; p2 = 150,000 Pa ?

  5. Know: p1, T1, p2, T2 irreversible What is s2-s1? 200,000 Pa 388K s2 irreversible 100,000 Pa 273K s1

  6. Know: p1, T1, p2, T2 & irreversible What is s2-s1? Valid for any process between equilibrium states dQ + dW = dE Tds = du + vdp IDEAL GAS & cv and cp = const s2-s1 = cvln(T2/T1) + Rln(v2/v1) (11.11a) s2-s1 = cpln(T2/T1) - Rln(p2/p1) (11.11b) s2-s1 = cvln(p2/p1) + cpln(v2/v1) (11.11c)

  7. s2-s1 = cpln(T2/T1) - Rln(p2/p1) (11.11b) = 103[J/kg-K] ln(388/273) – 287[J/kg-K] ln(200,000/100,000) = 134 J/(kg-K) ?

  8. Know T1, p1= p2,T2 IDEAL GAS s2-s1 = ? T1 = 858K p1 = 4.5 MPa s1 T2 = 15C p2 = p1 s2

  9. 0 s2-s1 = cpln(T2/T1) - Rln(p2/p1) (11.11b) s2-s1 = 1000 ln([273+15]/858) s2-s1 = -1.09 kJ/(kg-K) 1 T 2 s IDEAL GAS & cv and cp = const s2-s1 = cvln(T2/T1) + Rln(v2/v1) (11.11a) s2-s1 = cpln(T2/T1) - Rln(p2/p1) (11.11b) s2-s1 = cvln(p2/p1) + cpln(v2/v1) (11.11c)

  10. s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b)

  11. What equation has q in it?

  12. q = dh = cpdT q = cp(T2-T1) q = -572kJ/kg

  13. Find po

  14. Find po From Table A-3, pg 719 z =12.5 km; p/pSL = 0.1776 / SL = 0.2361 SL = 1.225 kg/m3 pSL = 101.3 kPa k = 1.4 po = 28.85 kPa

  15. V from B.E. = ? V for compressible (=Mc) = ?

  16. Find plane speed assuming incompressible* B.E. po = p + ½  V (p, T and are for z=12.5 km) po = 28.85kPa; p = 17.99kPa;  = 0.2892kg/m3 V = 274.1 m/s Find plane speed assuming compressible flow. V =Mc = M(kRT)1/2 V = 250.8 m/s ~ 9% error

  17. Find To and po

  18. Find To and po p0 = 184 psia To = 996oF

  19. dm/dt = VA = ?

  20. Find mass flow rate Know p, T, M • dm/dt = VA = 174 lbm/sec • A = 2 ft2 • V = Mc = M(kRT)1/2 • R = Ru/Mm for air = 1717 ft2(s2-R) = 8314 m2(s2-K) • For R = 1717 ft2/(s2-R) , T must be in Rankine (460 +60 = 520R) • V = 3.0(1.4*1717*520*)1/2 = 3354 ft/sec  = p/(RT) • = 5[lbf/in2][32.2lbm/lbf][144in2/ft2]/(1717[ft2/(s2-R)]520R)  = 0.0260 lbm/ft3

  21. M1 T1 p1 M2>M1 T2>T1 p1>p2 flow Q added

  22. s2 – s1 = cv ln (T2/T1) + R ln (v2/v1) (11.11a) s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b) s2 – s1 = cv ln(p2/p1) + cp ln (v2/v1) (11.11c)

  23. K N O W s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b) KNOW  = p/(RT)

  24. At location 1 po1 = 1.0MPa[1 + 0.2*(0.2)2]3.5 = 1.028 MPa At location 2 po2 = 862.7kPa[1 + 0.2*(0.4)2]3.5 = 0.9632kPa At location 1 To1 = 580K[1 + 0.2*(0.2)2] = 584.6K At location 2 To2 = 1727K[1 + 0.2*(0.4)2] = 1782K

  25. s2 – s1 = cp ln (T2/T1) - R ln (p2/p1) (11.11b) 1004 J/kg-K 1727/580 0.8627/1.0 287 J/kg-k s2 – s1 = 1138 J/kg-K

  26. ? s2 – s1 = 1138 J/kg-K po1 = 1.028 MPa po2 = 0.9632kPa To1 = 584.6K To2 = 1782K

  27. Can consider ideal gas T1 = 1573oK; p1 = 2.0 MPa T2 = 773oK; p2 = 101 kPa u = ?; h = ?; s = ?

  28. Valid for any process between equilibrium states dQ + dW = dE Tds = du + vdp IDEAL GAS & cv and cp = const s2-s1 = cvln(T2/T1) + Rln(v2/v1) (11.11a) s2-s1 = cpln(T2/T1) - Rln(p2/p1) (11.11b) =143 J/(kg-K) s2-s1 = cvln(p2/p1) + cpln(v2/v1) (11.11c) u = cVT(11.2) h = cpT(11.3)

  29. increasing pressure

  30. Steady, adiabatic flow of air, dm/dt = 0.5 kg/sec, through a turbine. At inlet, V1 = 0, T1 = 1300C, p1 = 2.0 mPa (abs) At outlet, V2 = 200 m/s, T2 = 500C, p2 = 101 kPa Label state points on a Ts diagram:

  31. If isentropic: T2 = T1 (p2/p1)(k-1)/k = 670K (397C)  500C So not isentropic!

  32. What is power produced by turbine? Steady, adiabatic flow of air, dm/dt = 0.5 kg/sec, through a turbine. At inlet, V1 = 0, T1 = 1300C, p1 = 2.0 mPa (abs); At outlet, V2 = 200 m/s, T2 = 500C, p2 = 101 kPa 0 dW/dt + dQ/dt = (dm/dt) [(h2 + (V2)2/2 + gz2) - (h1 + (V1)2/2 + gz1)] z2 = z1 h2 – h1 = cp (T2 – T1)

  33. Can speed of car at 60 mph and 120 mph be considered incompressible? [0 - 1]/0 = ? < 5% then we consider incompressible M = ? < 0.3 the answer is yes!

  34. 0 = 1{ 1 + [(k-1)/2]M12}1/(k-1) M1 = V1/c1 c1 = (kRT1)1/2 [0 - 1]/0 = 0.3% M = 0.0782 V1 = 60 mph = 26.8 m/s; R = 287 J/(kg-K); 1 = p1/(RT1) = 1.201 kg.m3;

  35. 0 = 1{ 1 + [(k-1)/2]M12}1/(k-1) M1 = V2/c1 c1 = (kRT1)1/2 [0 - 1]/0 = 1.21% M = 0.156 V1 = 120 mph = 53.6 m/s; R = 287 J/(kg-K); 1 = p1/(RT1) = 1.201 kg.m3;

  36. Know p0, p and T and are asked to find V of aircraft.

  37. Know p0, p and T and are asked to find V of aircraft. M = V/c so V = Mc c = (kRT)1/2 po/p = (1 + [(k-1)/2] M2)k/(k-1)

More Related