220 likes | 315 Views
Introduction to Algebraic Specifications with CafeOBJ. Lecture 2 21/11/2012 National Technical University of Athens. CafeOBJ Use Cases. TESLA Protocol Sensor Network Encryption Protocol MPEG-2 Encoding Algorithm Social Networks Semantic Web DRM systems E-Government Systems
E N D
Introduction to Algebraic Specifications with CafeOBJ Lecture 2 21/11/2012 National Technical University of Athens
CafeOBJ Use Cases • TESLA Protocol • Sensor Network Encryption Protocol • MPEG-2 Encoding Algorithm • Social Networks • Semantic Web • DRM systems • E-Government Systems • Many more…
CafeOBJ Use Cases • Take it slow… • Systems: • DATA TYPES • ACTIONS ON DATA TYPES • Before we go into systems we must start simple: • Study the specification of simple data types (Natural numbers) • Learn how to verify
Review of a Module ModuleName mod! NATplus { [Nat] op 0 : -> Nat ops_ : Nat -> Nat op _+_ : Nat Nat -> Nat vars M N : Nat eq 0 + N = N . eq (s M) + N = s(M + N) . } Sort Signature operations Variabledefinition equations
Example Factorial • Define Factorial • What data types do we need?? • Which operations on these data types ???
Example Factorial mod! FACT { pr(PNAT) op _! : Nat -> Nat var X : Nat ceq X ! = s(0) if X = 0 . eq s(X) ! = s(X) * (X !) . } NO SORT DECLARED!!!! We only import the module PNAT: This allows us to use everything defined in PNAT
Example Factorial • Reduction: open FACT red 0 ! . red s(s(s(0))) ! . close
Proofs – Example Associativity of + • Data types required?? • Operations on these data types???
Proofs – Example Associativity of + mod! PNAT { [Nat] op 0 : -> Nat op s : Nat -> Nat op _+_ : Nat Nat -> Nat {prec: 30} op _*_ : Nat Nat -> Nat {prec: 29} op _=_ : Nat Nat -> Bool {comm} vars X Y : Nat -- _+_ eq 0 + Y = Y . eq s(X) + Y = s(X + Y) . -- _*_ eq 0 * Y = 0 . eq s(X) * Y = Y + (X * Y) . -- _=_ eq (X = X) = true . eq (0 = s(Y)) = false . eq (s(X) = s(Y)) = (X = Y) . }
Proofs – Example Associativity of + mod THEOREM-PNAT { pr(PNAT) -- arbitrary values ops x y z : -> Nat . -- Names of Theorems op th1 : Nat NatNat -> Bool eq th1(X,Y,Z) = ((X + Y) + Z = X + (Y + Z)) . }
Proofs – Example Associativity of + -- I. Base case. open THEOREM-PNAT reduce when X = 0 . close -- -- II. Induction case. open THEOREM-PNAT -- check if it holds for X then it should hold for S(X) (th1(X,Y,Z) implies th1(S(X),Y,Z) ) close
Proofs – Example Commutativityof + • Previous proof was very easy • Minimum human interaction was required • Are all proofs this easy?? • 99.9% of the cases no. • Example Commutativityof +
Commutativity of + • eq th2(X,Y) = (X + Y = Y + X) . • Open THEOREM-PNAT • red th2(0,Y) . close • CafeOBJ returns : (y = (y + 0)):Bool • Conclude it cannot reduce y + 0 to 0 • We must PROVE it
Commutativity of + • eq th5(X) = (X + 0 = X) . open THEOREM-PNAT -- check red th5(0) . close -- -- II. Induction case. open THEOREM-PNAT -- check red th5(x) implies th5(s(x)) . close
Commutativity of + • Use the New theorem to prove the base case of th2: open THEOREM-PNAT -- check red th5(y) implies th2(0,y) . close
Commutativity of + • Inductive Step: • red th2(x,y) implies th2(s(x),y) . • CafeOBJ returns: • ((((x + y) = (y + x)) and (s((x + y)) = (y + s(x)))) xor (((x + y) = (y + x)) xor true)):Bool • No obvious Lemma: • SPLIT THE CASE
Commutativity of + • Case Splitting is donned by: • Selecting a part of the returned term • Adding as assumptions that it is equal to true and false respectively • red th2(x,y) implies th2(s(x),y) . • eq (x + y = y + x) = false. • red th2(x,y) implies th2(s(x),y) . • eq (x + y = y + x) = true. • red th2(x,y) implies th2(s(x),y) .
Commutativity of + • open THEOREM-PNAT -- assumptions eq (x + y = y + x) = false . -- check red th2(x,y) implies th2(s(x),y) . close
Specification of a STACK pop push top
Specification of a STACK mod! STACK (X :: ELEMENT) { [ EmptyStackNonEmptyStack < Stack ] op empty : -> EmptyStack op push : Element Stack -> NonEmptyStack op pop_ : NonEmptyStack -> Stack -- only applicable to NonEmptyStack op top_ : NonEmptyStack -> Element -- only applicable to NonEmptyStack eq top push (E:Element, S:Stack) = E . eq pop push (E:Element, S:Stack) = S . }
Verification of a simple property • Prove that : • pop(pop(push(E1,(push(E2,S)))) = pop(pop(push(E2,(push(E1,S))))
Homework • Associativity * • Commutativity *