260 likes | 407 Views
Name: Date: Period: Topic : Multiplication & Division Properties of Exponents Essential Question : How can you use the multiplication and/or division properties of exponents to simplify problems?. Warm-Up: Mix-Review Explain how do you determine if a problem
E N D
Name: Date:Period:Topic: Multiplication & Division Properties of ExponentsEssential Question: How can you use the multiplication and/or division properties of exponents to simplify problems? Warm-Up: Mix-Review Explain how do you determine if a problem is a function, provide an example. I should use my notes to refresh my memory!
Location of Exponent • An exponent is a little number high and to the right of a regular or base number. Exponent 3 4 Base
Definition of Exponent • An exponent tells how many times a number is multiplied by itself. Exponent 3 4 Base
What an Exponent Represents • An exponent tells how many times a number is multiplied by itself. 4 = 3 x 3 x 3 x 3 3
How to read an Exponent • This exponent is read three to the fourth power. Exponent 3 4 Base
MULTIPLYING POWERS WITH THE SAME BASE Numbers Algebra Words To multiply powers with the same base, keep the base and add the exponents. bm • bn = bm + n 35 • 38 = 35 + 8 = 313
1. 66 •63 Alone! Together! 5. 42 •44 6. x2 •x3 2. n5 •n7 7. x5 • y2 3. 25 • 2 8.412• 417 4.244• 244
Multiplying Power of a Power Numbers Algebra Words To multiply power of a power, keep the base and multiply the exponents. (pr)s = pr •s NOTE: Multiply the exponents, not add them!
Alone! Together! 3. (y4)2 1. (x2)3 4. (3)6 2. (55)2
6.) (3a)3 •(2p)2 7.) w3• (3w)4 8.) p-2 9.)(a2b)0 10.)(x-2y3)-2 1.) b2• b7 2.) (p3)4 3.) (a2)3• a3 4.) x2• (xy)2 5.) (4m)2 • m3 Pair- Practice!
6.) (3a)3 • (2p)2 6.) 108a3p2 7.) w3• (3w)4 7.) 81w7 8.) p-2 8.) 1/p2 9.)(a2b)0 9.) 1 10.)(x-2y3)-2 10.) x4/y6 A N S W E R S 1.) b2• b7 1.) b9 2.) (p3)4 2.) p12 3.) (a2)3• a3 3.) a9 4.) x2• (xy)2 4.) x4y2 5.) (4m)2 • m3 5.) 16m5
Ex: Multiplying Polynomials: In multiplying polynomials, you have to multiply the coefficients and add up the exponents of the variables with the same base.
Please simplify the following equations: How?: Answer:
Additional Practice: Page 429 - 431 (8, 9, 16, 47, 49, 73) Page 436 - 437 (20, 47)
Finding Quotients of Powers Simplify Alone Together A. A. B. B. C. C. D. D.
Finding Positive Powers of Quotient Simplify. Alone Together A. A. B. B. C. C.
Finding Negative Powers of Quotients Simplify. Alone Together A. A. B. B. C. C.
Additional Practice: Page 443 - 445 (8, 11, 13, 37, 42, 49, 50, 60)
Home-Learning Assignment #8: Page 429 - 431 (25, 48, 50, 72) Page 437 – 438 (48, 78) Page 443 - 445 (14, 16, 43, 70) Can’t wait until I get home to do my Home-Learning!!!