290 likes | 587 Views
Fermi-Luttinger Liquid. Alex Kamenev. in collaboration with. Leonid Glazman, U of M Maxim Khodas, U of M. Michael Pustilnik, Georgia Tech. PRL 96 , 196405 (2006); arXiv:cond-mat/0702.505 arXiv:cond-mat/0705.2015. RPMBT14, Jul., 2007. One-dimensional …. Dekker et al 1997.
E N D
Fermi-Luttinger Liquid Alex Kamenev in collaboration with Leonid Glazman, U of M Maxim Khodas, U of M Michael Pustilnik, Georgia Tech PRL 96, 196405 (2006); arXiv:cond-mat/0702.505 arXiv:cond-mat/0705.2015 RPMBT14, Jul., 2007
One-dimensional … Dekker et al 1997 Bockrath, et al 1997 M. Chang, et al 1996 Auslaender et al 2004 I. Bloch 2004
d>1: Fermi Liquid Spectral density: Energy relaxation rate: interaction potential • The same for holes
Spectral density: Energy relaxation rate: d=1 ? ?
Spectral density: Energy relaxation rate: Luttinger model Dzaloshinskii, Larkin 1973
Luttinger model (cont) Haldane, 1983
Energy relaxation rate: interaction potential 1D with non-linear dispersion: Particles • Does not work for integrable models
Particles (cont) • Fermi head with the Luttinger tail
Spectral Edges • Shake up or X-ray singularity (cf. Mahan, Nozieres,…)
Linear dispersion • Exact result within the Luttinger approximation. Luttinger approximation How does the dispersion curvature and interactions affect the structure factor ?
interactions Fourier components of the interaction potential V Spectrum curvature + interactions
AFM spin chain N 200. For this case we have calculated 2 200 000 form factors S. Nagler, et al 2005
Caux, Calabrese, 2006 Constant-q scan Lieb-Liniger model, 1963 Bose-Fermi mapping (1D) Bosons with the strong repulsion = Fermions with the weak attraction – changes sign. 1D hard-core bosons = free fermions (Tonks-Girardeau) Divergence at the upper edge 1D Bose Liquid
Bosons Structure factor: conclusions • Power law singularities at the spectral edges (Lieb modes) with q-dependent exponents. Fermions
Fermi-Luttinger Liquid • Hole’s mass-shell is described by the Luttinger liquid (with momentum-dependent exponent). • Particle’s mass-shell is described by the Fermi liquid (with smaller relaxation rate). • Spectral edges of the spectral function and the structure factor exhibit power-law singularities.
Boson-Fermion mapping Hydrodynamics Summary of bosonic exponents ?
Numerics (preliminary) Courtesy of J-S. Caux
Numerics (preliminary) Courtesy of J-S. Caux