1 / 15

Carlo Broggini, INFN-Padova

LUNA and the Sun. Men in pits or wells sometimes see the stars…. Aristotle. Nuclear Burning in Stars s (E star ). Carlo Broggini, INFN-Padova. s ( E ) = S(E) e –2 ph E -1. 2 ph = 31.29 Z 1 Z 2 m/E. . Reaction Rate(star) . F (E) s (E) dE. m = m 1 m 2 / ( m 1 + m 2 ).

Download Presentation

Carlo Broggini, INFN-Padova

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LUNA and the Sun Men in pits or wells sometimes see the stars…. Aristotle • Nuclear Burning • in Stars • s(Estar) Carlo Broggini, INFN-Padova s(E) = S(E) e–2phE-1 2ph = 31.29 Z1Z2m/E  Reaction Rate(star)  F(E) s(E) dE m = m1m2 / (m1+m2) Gamow Peak Extrap. Meas. s Maxwell Boltzmann s

  2. luna

  3. LUNA1 ( 50kV) LUNA2 (400kV) Voltage Range :50-400 kV Output Current: 1 mA (@ 400 kV) Absolute Energy error ±300 eV Beam energy spread: <100 eV Long term stability (1 h) : 5 eV Terminal Voltage ripple: 5 Vpp Ge detector Voltage Range : 1 - 50 kV Output Current: 1 mA Beam energy spread: 20 eV Long term stability (8 h): 10-4 Terminal Voltage ripple: 5 10-5

  4. p + p  d + e+ + ne d + p  3He + g pp chain 84.7 % 13.8 % 3He +3He  a+2p 3He +4He  7Be + g 0.02% 13.78 % 7Be +p  8B + g 7Be+e- 7Li + g +ne 7Li +p  a + a 8B 2a + e++ ne

  5. 3He(,g)7Be Q=1.6 MeV • Solar Neutrinos:7Be,8B • BBN 7Li • Cross section from prompt gamma down to • 90 keV (CM energy) using 4He beam on 3He • target • Activation via off-line radioactive decay • measurements of the 7Be atoms collected • in the beam catcher • All with a final error < 5 %

  6. s of3He(,g)7Be down to 93keV • 7Be ≈ prompt g • S34(0) = 0.560  0.017 keV barn • ΔΦ(B) reduced from 12% to 10% • ΔΦ(Be) reduced from 9.4% to 5.5% (C. Pena Garay) Borexino-Kamland

  7. 14N(p,g)15O Q=7.3 MeV E<1.2 MeV E<1.7 MeV •  F S1,14  cno cno • Globular Cluster Age S(0)=3.5-1.6+0.4 keV b (Ad98) S(0)=3.2-0.8+0.8 keV b (An99)

  8. 278 Low energy: gas target + BGO 7556 1/2+ 7297 14N(p,g)15O 7276 7/2 + 14N+p 6859 5/2 + -21 6793 3/2 + - 504 6176 3/2 - 5241 5/2 + 5183 1/2 + “High” energy: solid target + HpGe 15O 0 1/2 - beam energy 90 keV gamma spectrum of 14N(p,g)15O at 140 keV beam energy

  9. cno from the Sun Globular cluster age C yield in AGB stars St(0)=1.61±0.18 keV b ‘clover’ study of the capture to the ground state:error on St(0)= ±0.13 cno from the Sun solar core metallicity

  10. Rich program ofNuclear Astrophysics: 25Mg(p,g)26Al Q=6.3 MeV (almost completed) 15N(p,g)16O Q=12.13 MeV (already started) 2H(α,g)6LiQ=1.47 MeV 17O(p,g)18F Q=5.6 MeV 18O(p,g)19F Q=8.0 MeV 22Ne(p,g)23Na Q=8.8 MeV 23Na(p,g)24Mg Q=11.7 MeV ............

  11. 15N(p,g)16O

  12. LUNAhas shown that it is possible to measure • s(Estar): 3He (3He,2p)4He, 2H(p,g)3He • 3He (3He,2p)4He: sdown to 16 keV • no resonance within the solar Gamow Peak sdown to 93 keV • 3He(,g)7Be: 7Be ≈ promptg ΔΦ(Be)reduced from9.4% to 5.5% • 14N(p,g)15O: s down to 70 keV (T=60 T6) • cnoreduced by  2 with 8% error core metallicity • Globular cluster age increased by 0.7-1 Gy • Higher C yield in AGB stars

  13. LUNA INFN - Laboratori Nazionali del Gran Sasso D.Bemmerer,R.Bonetti,C.Broggini,F. Confortola,P.Corvisiero,H.Costantini, Z.Elekes, A.Formicola, Z. Fülöp, G.Gervino,A.Guglielmetti, C.Gustavino, G. Gyurky, G. Imbriani, M.Junker, A.Lemut, B.Limata, V.Lozza,M.Marta,R.Menegazzo, P.Prati, V.Roca, C.Rolfs, M.Romano, C.RossiAlvarez, O.Straniero,F.Strieder, E.Somorjai,F.Terrasi,H.P.Trautvetter •INFN : Genova, LNGS, Milano, Napoli, Padova, Torino •Inst.Physik mit Ionenstrahlen, Ruhr-Universität Bochum •Forschungszentrum Dresden-Rossendorf •Atomki Debrecen

More Related