1 / 17

Photo-fission at the S-DALINAC

SFB 634. Photo-fission at the S-DALINAC. A. Göök, SFS-KF, Örebro, 18.11.2009. Photo-fission at the S-DALINAC Experiments on 238 U( γ , f) and 234 U( γ , f) Motivation Experimental setup Data analysis Results Summary and Outlook. Photo-fission at the S-DALINAC.

audi
Download Presentation

Photo-fission at the S-DALINAC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. | Institut für Kernphysik | Alf Göök | 1 SFB 634 Photo-fission at the S-DALINAC A. Göök, SFS-KF, Örebro, 18.11.2009 • Photo-fission at the S-DALINAC • Experiments on 238U(γ, f) and 234U(γ, f) • Motivation • Experimental setup • Data analysis • Results • Summary and Outlook

  2. 18.11.2009 | Institut für Kernphysik | Alf Göök | 2 Photo-fission at the S-DALINAC Search for parity non-conservation (PNC) in photo-fission Role of weak interaction? Weak- vs. strong interaction (Ratio of coupling constants)  PNC ~ 10-7 Neutron induced fission experiments  PNC ~ 10-4 Perturbation theory: high level density  dynamical enhancement Other enhancement effects? Alternate probe  photons Brems -Target Fission - Target Longitudinal polarized e- Circular polarized photons Forward-backward asymmetry

  3. Brems -Target Fission - Target Longitudinal polarized e- Circular polarized photons Forward-backward asymmetry How to measure PNC • PNC forward-backward asymmetry • Fission fragments properties • Angular distribution • Small effect  High integrated luminosity • Double ionization chamber • Fragment properties (TKE, mass) from 2E-measurement • Emission angle from electron drift time • Radiation hard 18.11.2009 | Institut für Kernphysik | Alf Göök | 3

  4. Cu- Radiator Collimator e- Experimental Setup: Bremsstrahlung • Continuous spectra: Nγ(E) • Endpoint Energy: E0 = Ee- • Average excitation energy:

  5. 3 cm ~20 cm Experimental Setup: Twin Frisch-grid ionization chamber S-DALINAC Injector E0<10 MeV I~50 μA 18.11.2009 | Institut für Kernphysik | Alf Göök | 5

  6. Emission Angle Determination:Drift Time Method • Electron drift time  Emission angle:  Corrections for: • Grid inefficiency • Energy loss in target corrections 18.11.2009 | Institut für Kernphysik | Alf Göök | 6

  7. Resolution in cosθ • Collinear fragments: • Target thickness • Angular straggling • Range uncertainty • Compared to traditional method • Drift time method competitive 18.11.2009 | Institut für Kernphysik | Alf Göök | 7

  8. Determining fragment energy & mass • 2E-technique • Prompt neutron evaporation • Pulse height defect 18.11.2009 | Institut für Kernphysik | Alf Göök | 8

  9. Results: 238U(γ, f) • Agreement with literature: • S. Pommé et al. Nucl. Phys. A572 (1994) 237 • Experimental method and analysis under control 18.11.2009 | Institut für Kernphysik | Alf Göök | 9

  10. Results: 234U(γ, f) • Comparison with 233U(d, pf) • Y. Patin et al. Nucl. Phys. A382 (1982) 31 • σm discrepancy • Mass resolution effect? 18.11.2009 | Institut für Kernphysik | Alf Göök | 10

  11. 238U(γ,f): <E*>= 7.1 MeV Identification of Fission Modes • Fission modes  Parameterization of Y(m,TKE) • Agreement with literature • New results for 234U(γ,f) at low <E*> 238U(γ,f) 234U(γ,f) 18.11.2009 | Institut für Kernphysik | Alf Göök | 11

  12. Summary and Outlook • Functionality of the double ionization chamber • Drift time method for emission angle determination • Determination of Fragment properties • Solid target • Target thickness ↔ resolution • Active target • UF6: gas at 57°C • Target = Counting gas • Energy loss problem eliminated • Next steps • Properties of counting gas: test chamber • Pixelated anode for PNC-experiment 18.11.2009 | Institut für Kernphysik | Alf Göök | 12

  13. Collaboration A. Göök, R. Barday, M. Chernykh, C. Eckardt, R. Eichhorn, J.Enders, P. von Neumann-Cosel, Y. Poltoratska, A. Richter, M. Wagner Institut für Kernphysik, Technische Universität Darmstadt, Germany F.-J. Hambsch, S. Oberstedt EC-JRC, Institute for Reference Materials and Measurements (IRMM), 2440 Geel, Belgium A. Oberstedt Akademin för naturvetenskap och teknik, Örebro universitet, Sweden 18.11.2009 | Institut für Kernphysik | Alf Göök | 13

  14. Mass resolution • 2E-technique • Intrinsic: target thickness  simulation • 238U: ∆m = 6 amu (FWHM) • 234U: ∆m = 8 amu(FWHM) • Inherent: prompt neutron evaporation • Mass dependent: ~3 amu(FWHM) • Total: • 238U: ∆m ~ 7 amu(FWHM) • 234U: ∆m ~ 9 amu(FWHM) 18.11.2009 | Institut für Kernphysik | Alf Göök | 14

  15. Targets 238 (234)UF4: 130 (190) μg/cm² Au: 50 μg/cm² Polyimide: 35 μg/cm² 18.11.2009 | Institut für Kernphysik | Alf Göök | 15

  16. MM-RNR

  17. PNC-enhancement • Forward-backward asymmetry • “Dynamical” enhancement • Perturbation theory • High resonance density • “Structural” enhancement • Structural effects  • Large in low energy (sub-barrier) fission

More Related