220 likes | 352 Views
Nuclear Astrophysics at the Darmstadt superconducting electron linear accelerator S-DALINAC. Kerstin Sonnabend ESF Workshop on The future of stable beams in Nuclear Astrophysics Athens, Greece December 14 th to 15 th , 2007 supported by the DFG under grant No. SFB 634. Contents.
E N D
Nuclear Astrophysics at the Darmstadt superconducting electron linear acceleratorS-DALINAC Kerstin Sonnabend ESF Workshop onThe future of stable beams in Nuclear Astrophysics Athens, Greece December 14th to 15th, 2007 supported by the DFG under grant No. SFB 634
Contents • S-DALINAC at TU Darmstadt • Photoactivation experiments • HIPS – High-intensity photon setup • LCS – Laboratory for counting & spectroscopy • NEPTUN – High-resolution photon tagger • Electron-scattering experiments • QCLAM – Large-acceptance spectrometer
S-DALINAC at TU Darmstadt HIPS – electron energies from 2 to 130 MeV available – cw and pulsed beam operation possible – source for polarized electron beams under construction injector: two 20-cell Nb cavities, up to 11 MeV main linac: eight 20-cell Nb cavities, up to 40 MeV per circle first recirculation second recirculation beam extraction
HIPS – High-intensity photon setup Au/Re - target 11B - target n n g g 0 ≤ Eg ≤ Emax 0 ≤ Eg ≤ Emax electrons Emax collimator radiator Activation with continuous-energy bremsstrahlung ≈ 300 · Ng Ng ≈ 105g / (keV s cm2) K. Sonnabend et al., Astroph. J. 583 (2003) 506 K. Vogt et al., Nucl. Phys. A707 (2002) 241
LCS – Laboratory for counting and spectroscopy Pb HPGe Cu Pb Pb g LEPS LEPS g g g Cu Pb Pb Determination of activation yield with g-spectroscopy – three low-energy photon spectrometers (LEPS) – four 30% and 40% HPGe detectors – setups with passive Cu and/or Pb shielding – complementation with x-ray detectors and electron counters
LCS – Laboratory for counting and spectroscopy Sample decay spectra: LEPS versus HPGe
Photoactivation experiments • Activation yield Y measured offline • Use of naturally composed targets (e.g.196Hg, 198Hg, 199mHg, 200Hg) • Activate targets simultaneously (e.g. Zr, Re, Ir, and Au) • Measure weak g branchings (e.g.185W: T1/2 = 75 d, Eg=125 keV, Ig≈10-4) • method perfectly suited for systematic studies • Restrictions of activation method • Appropriate lifetime of product nucleus • Appropriate transitions during decay of product nucleus • Accelerator Mass Spectrometry (AMS) • No direct cross section measurements • Use quasi-monoenergetic photon beams, e.g. AIST, Japan • Use tagged photons, e.g. NEPTUN @ S-DALINAC
Photoactivation experiments NEPTUN taggersystem NEPTUN – High-resolution photon tagger 5 m
NEPTUN – High-resolution photon tagger magnet 1 m coincidence focal plane radiator experiment photons electrons Energy range: 6 MeV ≤ Eg ≤ 20 MeV Energy resolution: DE = 25 keV @ 10 MeV Energy window: ≈ 3 MeV Photon intensity: ≈ 104 keV-1s-1 Photon energy: Eg = Ei - Ee
NEPTUN – High-resolution photon tagger Recent data from test experiment SE PP DE
NEPTUN – High-resolution photon tagger DE SE PP ≈ 250 keV FWHM ≈ 50 keV Recent data from test experiment
Photoactivation experiments NEPTUN detectorarray High-resolution cross section measurements 5 m
NEPTUN – High-resolution photon tagger – 14 liquid scintillator neutron detectors – 8 additional 10B enriched liquid scintillator detectors Determine (g,n) cross sections with 100 keV ≤ En ≤ 10 MeV – high-resolution cross section measurements – determination of angular momentum of neutrons – (g,p) and (g,a) in preparation
Electron-scattering experiments QCLAM (e,e‘x) experiments of astrophysical interest 5 m
QCLAM – Large-acceptance spectrometer – scattering chamber – quadrupole magnet – clamshell dipole magnet (deflection angle: 120°) – three multiwire drift chambers – plastic scintillation and plexiglas Cherenkov counters
QCLAM – Large-acceptance spectrometer – momentum resolution:Dp/p = 2 10-4 – solid angle acceptance: 35 msr – max. central momentum: 200 MeV/c – momentum acceptance: ±10%
QCLAM – Large-acceptance spectrometer Electron scattering at 180° deflection angle – momentum resolution:Dp/p = 2 10-4 – solid angle acceptance: 6.4 msr – max. central momentum: 95 MeV/c – momentum acceptance: -5% to +8%
Electron-scattering experiments Recent results on M1 deuteron break-up – high energy resolution and high selectivity of M1 states – precision test of modern theoretical models – prediction of p(n,g)d cross section at Big Bang energies
Electron-scattering experiments Shell-Modeltotal Orbital Spin B(M1) / m2N 54Fe 52Cr / 10-42 cm2 50Ti S-DALINAC 52Cr B(M1) / m2N Neutrino Energy / MeV excitation energy / MeV K. Langanke et al., PRL 93 (2004) 202501 Role of neutrino-induced reactions – high resolution (e,e‘) data M1 strength distribution GT0 from shell-model calc. n-nucleus cross section • properties of pre-collapse core • supernova shock revival • explosive nucleosynthesis
Electron-scattering experiments Nucleosynthesis of 9Be and 10B • production mechanism of 9Be and 10,11B not clear • spallation of 12C by neutrinos • branching ratios of 12C(e,e‘x) • detection and discrimination of p, d, t, 3He and 4He • E-E-telescopes, TOF and/or PSD • electro-weak theory • extract (,‘) cross sections
Experimental hall of the S-DALINAC NEPTUN HIPS QCLAM Setups for experiments on Nuclear Astrophysics
Many thanks to… Technische Universität Darmstadt:M. Fritzsche, E. Gehrmann, J. Glorius, J. Hasper, K. Lindenberg, S. Müller, N. Pietralla,A. Sauerwein, D. Savran, L. Schnorrenberger,and the QCLAM group Universität zu Köln:M. Büssing, J. Endres, M. Elvers, and A. Zilges Roberto Gallino, Torino, Italy Franz Käppeler, Karlsruhe, Germany Karlheinz Langanke, Darmstadt, Germany Alberto Mengoni, Vienna, Austria Thomas Rauscher, Basel, Switzerland