120 likes | 266 Views
Kinetic limits on sensors imposed by rates of diffusion , con vection (delivery by flow), and reaction (binding to capture molecule ) Basic idea – most sensors flow sample by sensing surface If flow is slow compared to diffusion and binding,
E N D
Kinetic limits on sensors imposed by rates of diffusion, convection (delivery by flow), and reaction (binding to capture molecule) Basic idea – most sensors flow sample by sensing surface If flow is slow compared to diffusion and binding, region near sensor surface gets depleted of analyte, which slows rate of detection. What would analyte distribution look like at equilibrium? We focus on transient steady-state before most receptors bind analyte
If flow is fast, portions of the sample are never “seen” by the detector. How can one match these rates for best operation in particular applications? How can one estimate analyte conc. near surface? These issues are crucial in real-time sensing (SPR) and when dealing with very low concentration analyte.
Main points to cover Relationships between flow rate Q, fluid velocity U, channel dimensions H and W, pressure P, viscosity h How big is depletion region at low flow rates How big is depletion region at high flow rates How much does depletion slow approach to equil.
Relations between Q, W, H, U, P, h, etc. Common sensor geometry L z Q [vol/s] = area x average velocity = W H U Total flux [molec/s] = Q x c x area Fluid velocity profile is parabolic with z: u(z) = 6 U z(H-z)/H2 How would you expect Q to vary with P, W, H, L, h? ~ P W H / Lh Q= (H2/12)PWH/Lh
2. How big is depletion region d (roughly) at low flow rates? If flow slows, how does d change? If flow increases, how does d change? At equilibrium, total flux from convection Q c0 = total flux from diffusion (D (c0 – 0)/d ) H W => d = H W D / Q d/H = nice dimensionless quantity (for fluid mech!) = 1/PeH, when d >> H, PeH <<1 If d << H, does this way of measuring flux make sense? c0 d
3. How big is depletion region d at high flow rates (e)? Steady-state: time to diffuse d = time to flow over L d2/D = L/u(d) u(d) = 6Qd/WH2 ford<<H -> d/L = (DH2W/6QL2)1/3 = (1/Pes)1/3
4. How much does depletion slow approach to equil. Estimate cS= conc at which rate molecules diffuse across d from c0 to cs = rate at which they bind to receptor JD= area x D x (c0 – cS)/dS= LWSD(c0 – cS)(PeS)1/3/L JR= kon x cS x # free receptors on surface = koncS(bm-b)LWS initially, all receptors are free (b=0) cS/c0 = 1/(1 + konbmL/D(PeS)1/3)= 1/(1+Da) “Damkohler” #, Da More simply, when Da>> 1, Da = c0 /cS
Usefulness of Damkohler # If binding kinetics are limiting, teq= trxn= koff-1/(1+c0/KD) If transport is limiting (Da>1), teq = Datrxn(slower) You can derive this by estimating teq = time it takes for bm [c0/KD/(1+ c0/KD)] Area molecules to bind analyte when they bind at rate koncsbm Area Caveat: formula fortrxn is underestimate when c0 is so low that at equil. less than 1 receptor molecule binds analyte Da >>1 means that when c0 is low, cs = c0/Da much lower and you enter the regime where trxn needs correction
Ways to get around some of these limits: Decrease koff, so sensor never “releases” a captured tgt e.g. bind analyte with more than 1 receptor Keep mixing sample to reduce depletion zone; hard to do on micro scale where all flow laminar Use some force to concentrate analyteat sensor surface (magnetic, electrophoretic, laser trap force), i.e. move it faster than diffusion
Summary of useful formulas for this course xrms =(6Dt)1/2D [m2/s] D = kBT/6phr (Stokes-Einstein) kBT = 4x10-21J = 4pNnm at room temp h(viscosity) = 10-3Ns/m2 for water jD [#/(area s)] = D (Dc/Dx)(Fick) PeH = Q/WCDd/H = 1/PeH when PeH < 1 PeS= 6l2PeHl = L/H dS/L = 1/(PeS)1/3 b(t)/bm -> [c0/KD /(1 + c0/KD)] (at steady state) trxn= koff-1/(1+c0/KD) KD = koff/kon[M] Da = konbmL/D(PeS)1/3teq = Datrxnwhen Da>1 kon typically ~106/Ms for proteins Fdrag = 6phr*velocity flow between parallel plates: Q=H3WCP/12hL velocity near surface = 6Qz/WCH2
Next class – microscale cantilever – measure mass of captured analyte Basic idea – put flow cell inside cantilever and operate the cantilever in air or vacuum to minimize drag Will use Manalis formulae to estimate mass transport characteristics! Read: Burg et al (Manalis lab!) Weighing biomolecules… Nature 446:1066 (2007)