1 / 27

Structures of Aldehydes and Ketones

Structures of Aldehydes and Ketones. Both aldehydes and ketones contain a carbonyl group Aldehydes have at least one H attached, while ketones have two C’s attached to the carbonyl A carbonyl consists of a C double-bonded to an O

Download Presentation

Structures of Aldehydes and Ketones

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Structures of Aldehydes and Ketones • Both aldehydes and ketones contain a carbonyl group • Aldehydes have at least one H attached, while ketones have two C’s attached to the carbonyl • A carbonyl consists of a C double-bonded to an O • Like in an alkene, the double bond consists of one sigma and one pi bond • The carbonyl is a very polar group - O is more electronegative than C, so C-O bonds are polar - Also, the carbonyl has two resonance forms - This polarity makes carbonyls chemically reactive

  2. Naming Ketones • Parent name ends in -one • Find longest chain containing the carbonyl group • Number C’s starting at end nearest carbonyl group • Locate and number substituents and give full name - use a number to indicate position of carbonyl group - cyclic ketones have cyclo- before the parent name; numbering begins at the carbonyl group, going in direction that gives substituents lowest possible numbers - use a prefix (di-, tri-) to indicate multiple carbonyl groups in a compound

  3. Naming Aldehydes • Parent name ends in -al • Find longest chain containing the carbonyl group • Number C’s starting at end nearest carbonyl group • Locate and number substituents and give full name - aldehydes take precedence over ketones and alcohols in naming - ketones are called oxo as a secondary group - alcohols are called hydroxy as a secondary group - the smallest aldehydes are usually named with common names - we will not name cyclic aldehydes (except benzaldehyde)

  4. Nomenclature • because the carbonyl group of an aldehyde can only be at the end of a parent chain and numbering must start with it as carbon-1, there is no need to use a number to locate the aldehyde group • for unsaturated aldehydes, indicate the presence of a carbon-carbon double bond and an aldehyde by changing the ending of the parent alkane from -ane to -enal; show the location of the carbon-carbon double bond by the number of its first carbon

  5. Nomenclature • the IUPAC system retains common names for some aldehydes, including these three

  6. Physical Properties of Aldehydes and Ketones • Because the carbonyl group is polar, aldehydes and ketones have higher boiling points than hydrocarbons • However, they have no H attached to the O, so do not have hydrogen bonding, and have lower boiling points than alcohols • Like ethers, aldehydes and ketones can hydrogen bond with water, so those with less than 5 carbons are generally soluble in water • Aldehydes and ketones can be flammable and/or toxic, though generally not highly so • They usually have strong odors, and are often used as flavorings or scents

  7. Oxidation of Aldehydes • Recall that aldehydes and ketones are formed by the oxidation of primary and secondary alcohols, respectively • Also recall that aldehydes are readily oxidized to carboxylic acids, but ketones are not • Tollens’ reagent (silver nitrate plus ammonia) can be used to distinguish between ketones and aldehydes - with aldehydes the Ag2+ is reduced to elemental silver, which forms a mirror-like coat on the reaction container • Sugars (like glucose) often contain a hydroxy group adjacent to an aldehyde - Benedict’s reagent (Fehlings reagent) (CuSO4) can be used to test for this type of aldehyde; the blue Cu2+ forms Cu2O, a red solid

  8. Oxidation • Aldehydes are oxidized to carboxylic acids by a variety of oxidizing agents, including potassium dichromate • liquid aldehydes are so sensitive to oxidation by O2 of the air that they must be protected from contact with air during storage

  9. Oxidation • Ketones resist oxidation by most oxidizing agents, including potassium dichromate and molecular oxygen • Tollens’ reagent is specific for the oxidation of aldehydes; if done properly, silver deposits on the walls of the container as a silver mirror

  10. Reduction of Aldehydes and Ketones • Reduction can be defined as a loss in bonds to O or a gain in bonds to H • Aldehydes and ketones can be reduced to form alcohols - Aldehydes form primary alcohols - ketones form secondary alcohols • Many different reducing agents can be used, including H2, LiAlH4 (lithium aluminum hydride) and NaBH4 (sodium borohydride) • However, NaBH4 is usually the reagent of choice - hydrogenation will also reduce alkenes and alkynes if present - LiAlH4 is more reactive than NaBH4, but reacts violently with water and explodes when heated above 120º C

  11. Reduction • The carbonyl group of an aldehyde or ketone is reduced to an -CHOH group by hydrogen in the presence of a transition-metal catalyst • reduction of an aldehyde gives a primary alcohol • reduction a ketone gives a secondary alcohol

  12. Reduction • reduction by NaBH4 does not affect a carbon-carbon double bond

  13. Reduction • In biological systems, the agent for the reduction of aldehydes and ketones is the reduced form of nicotinamide adenine dinucleotide, abbreviated NADH (this reducing agent, like NaBH4, delivers a hydride ion to the carbonyl carbon of the aldehyde or ketone • reduction of pyruvate, the end product of glycolysis, by NADH gives lactate

  14. Addition of Water to Aldehydes and Ketones • H2O can add across the carbonyl of an aldehyde or a ketone, similar to the addition of H2O to an alkene • A partial positive H from water bonds to the partial negative carbonyl O, and the partial negative O from water bonds to the partial positive carbonyl C • The product of this reversible reaction is a hydrate (a 1,1-diol) • In general, the equilibrium favors the carbonyl compound, but for some small aldehydes the hydrate is favored • The reaction can be catalyzed by either acid or base

  15. Mechanism of Acid-Catalyzed Hydration of Formaldehyde • First, the carbonyl O is protonated by the acid catalyst • Next, H2O attacks the carbonyl carbon to form a protonated hydrate • Finally, H2O removes the proton to form the hydrate

  16. Addition of Alcohols to Aldehydes and Ketones • Alcohols can add to aldehydes and ketones using an acid catalyst • Addition of 2 alcohols produces an acetal (a diether) • The reaction intermediate, after addition of one alcohol, is a hemiacetal (not usually isolated) • This is a reversible reaction - removal of H2O favors acetal - addition of H2O favors aldehyde or ketone • Acetals are often used as protecting groups in organic synthesis

  17. Formation of Cyclic Hemiacetals • When an aldehyde or a ketone is in the same molecule as an alcohol, a cyclic hemiacetal can form • These are more stable than the non-cyclic ones and can be isolated • Sugars, like glucose and fructose, exist primarily in the cyclic hemiacetal form • When an alcohol adds to a cyclic hemiacetal, a cyclic acetal is formed (this is how sugars bond together in polysaccharides)

  18. Addition of Alcohols • all steps in hemiacetal and acetal formation are reversible • as with any other equilibrium, we can drive this one in either direction by using Le Chatelier's principle • to drive it to the right, we either use a large excess of alcohol or remove water from the equilibrium mixture • to drive it to the left, we use a large excess of water

  19. Keto-Enol Tautomerism • A carbon atom adjacent to a carbonyl group is called an a-carbon, and a hydrogen atom bonded to it is called an a-hydrogen

  20. Keto-Enol Tautomerism • A carbonyl compound that has a hydrogen on an a-carbon is in equilibrium with a constitutional isomer called an enol • the name “enol” is derived from the IUPAC designation of it as both an alkene (-en-) and an alcohol (-ol) in a keto-enol equilibrium, the keto form generally predominates

More Related