1 / 28

APES Final Review

APES Final Review. Agriculture & Aquaculture. Where our food comes from…. Croplands (77%) Rangelands, pastures & feedlots (29%) Aquaculture (7%) There are 50,000 plant species that we can eat, yet 14 supply 90% of the worlds calories!!!. Food Sustainability. 14 varieties of plants

avak
Download Presentation

APES Final Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. APES Final Review Agriculture & Aquaculture

  2. Where our food comes from… • Croplands (77%) • Rangelands, pastures & feedlots (29%) • Aquaculture (7%) • There are 50,000 plant species that we can eat, yet 14 supply 90% of the worlds calories!!!

  3. Food Sustainability • 14 varieties of plants • 2/3 of the world survives primarily on corn, wheat & rice alone • Small number of species provide for meat & fish • This all leads to food specialization • Disease • Environmental degradation • Climate change

  4. Industrialized Agriculture • Heavy machinery • Goal is to produce more food per area of land • Characteristics include high fertilizer use, pesticide use, irrigation, genetic engineering, factory-like conditions • Monocultures • High resource use

  5. Case Study: Industrialized Food Production in the United States • Industrialized agriculture uses about 17% of all commercial energy in the U.S. and food travels an average 2,400 kilometers from farm to plate. Figure 13-7

  6. Traditional Agriculture • Labor- intensive • Polyculture • Usually lower resource use • Can have a higher output than Industrialized • Less susceptibility to changes

  7. Traditional Agriculture: Low Input Polyculture • Many farmers in developing countries use low-input agriculture to grow a variety of crops on each plot of land (interplanting) through: • Polyvarietal cultivation: planting several genetic varieties. • Intercropping: two or more different crops grown at the same time in a plot. • Agroforestry: crops and trees are grown together. • Polyculture: different plants are planted together.

  8. SUSTAINABLE AGRICULTURE THROUGH SOIL CONSERVATION • Modern farm machinery can plant crops without disturbing soil (no-till and minimum tillage. • Conservation-tillage farming: • Increases crop yield. • Raises soil carbon content. • Lowers water use. • Lowers pesticides. • Uses less tractor fuel.

  9. Contour Farming –sloping your growing crops, etc. • You run terraces parallel to the ground to stop soil from running down a steep slope. Plowing and planting crops in rows across, rather than up and down, the sloped contour of the land.

  10. Terracing – (what you use for contour farming.) Dirt goes up to hold the dirt in place. Broad, nearly level terraces that run across the land contour. Helps to retain water for crops at each level and reduce soil erosion by controlling runoff.

  11. SUSTAINABLE AGRICULTURE THROUGH SOIL CONSERVATION • Terracing, contour planting, strip cropping, alley cropping, and windbreaks can reduce soil erosion. Figure 13-16

  12. Strip Cropping – a row crop such as corn alternates in strips with another crop that completely covers the soil, reducing erosion. It catches and reduces water runoff and helps prevent the spread of pests and plant diseases.

  13. Cover Cropping (alley cropping) – several crops are planted together in strips or alleys between trees and shrubs that can provide shade (which reduces water loss by evaporation) and helps to retain and slowly release soil moisture.

  14. Irrigation Techniques • Conventional center-pivot irrigation- allows 80% of the water input to reach crops • Gravity-flow irrigation- Valves that send water down irrigation ditches. • Drip irrigation- Can raise water efficiency to 90-95% and reduce water use by 37-70%. • Floodplain irrigation- allowing the natural floods to irrigate the crops. Soils in flood zones tend to be nutrient rich and fertile.

  15. The Green Revolution • Increased food production using industrialized crop production (heavy machinery) • Steps of the Green Revolution • 1. Plant monocultures of high yield crops (wheat, corn, rice). Often genetically modified. • 2. Use high amounts of fertilizers and pesticides to increase yield • 3. Increase the number of crops grown per year

  16. Meat consumption on the rise • Effects: • More densely packed feedlots • High use of grain and or fish meal • Increased need of grain can lead to dependance on other countries

  17. Trade-Offs Animal Feedlots Advantages Disadvantages Increased meat production Need large inputs of grain, fish meal, water, and fossil fuels Higher profits Concentrate animal wastes that can pollute water Less land use Reduced overgrazing Reduced soil erosion Antibiotics can increase genetic resistance to microbes in humans Help protect biodiversity Fig. 13-21, p. 289

  18. PRODUCING MORE MEAT • Efficiency of converting grain into animal protein. Figure 13-22

  19. Harmful Environmental Impacts of Agriculture • Erosion • Degradation of soil • Water depletion • Water pollution • Greenhouse gasses • Air pollution • Biodiversity loss • **according to the EPA, agriculture is responsible for 75% of water quality issues in US rivers & streams

  20. Higher use of Biofuel • Biofuel is a renewable energy alternative • However, using too much biofuel aggravates the problems brought on by agriculture. • Are we replacing one problem with another?

  21. Aquaculture • Raising fish in ponds and underwater cages (43%) • Helps with over-fishing • Decrease contamination (ex. Mercury)

  22. Trade-Offs Aquaculture Advantages Disadvantages High efficiency Needs large inputs of land, feed, and water High yield in small volume of water Large waste output Destroys mangrove forests and estuaries Can reduce overharvesting of conventional fisheries Uses grain to feed some species Low fuel use Dense populations vulnerable to disease High profits Tanks too contaminated to use after about 5 years Profits not tied to price of oil Fig. 13-24, p. 292

  23. Fishing

  24. Purse Seines • A large purse-like net is put into the ocean and is then closed like a drawstring purse to trap the fish. • Tuna is a fish typically caught in purse seines • Dolphins are a by-catch of purse seines

  25. Long-line fishing • Lines are put out that can be up to 80 miles long w/ thousands of baited hooks on them. These are left out free-floating for days and then the boat comes back and picks them up. • Pilot whales, dolphins, sea turtles, and birds are by-catch of this technique.

  26. Drift-net fishing • Each net hangs as much as 50 feet below the surface and up to 34 miles long. • Anything that comes into contact w/ these nearly invisible nets are entangled. • This leads to overfishing • Many unwanted fish and marine mammals, turtles and seabirds are caught.

More Related