1 / 34

RECENT ADVANCES IN THE SPECTROSCOPY OF PLANETARY AND EXOPLANETARY ATMOSPHERES : WHAT IS OUT THERE ?

RECENT ADVANCES IN THE SPECTROSCOPY OF PLANETARY AND EXOPLANETARY ATMOSPHERES : WHAT IS OUT THERE ?. Hitran 2010 Pierre Drossart LESIA, Observatoire de Paris. Spectra of Giant Planets. Day side (Reflected sunlight). Thermal emission. XO-1b Tinetti et al, 2010. G. Kuiper, ApJ, 1947.

avariella
Download Presentation

RECENT ADVANCES IN THE SPECTROSCOPY OF PLANETARY AND EXOPLANETARY ATMOSPHERES : WHAT IS OUT THERE ?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RECENT ADVANCES IN THE SPECTROSCOPY OF PLANETARY AND EXOPLANETARY ATMOSPHERES : WHAT IS OUT THERE ? Hitran 2010 Pierre Drossart LESIA, Observatoire de Paris

  2. Spectra of Giant Planets Day side (Reflected sunlight) Thermal emission Hitran 2010 - Cambridge

  3. XO-1b Tinetti et al, 2010 G. Kuiper, ApJ, 1947 Hitran 2010 - Cambridge

  4. Line formation in Jupiter’s atmosphere (CH44 band) Growth of line through vertical atmospheric integration Hitran 2010 - Cambridge

  5. Spectra of Jupiter: Line formation in the thermal spectrumSimulations at high/low resolution Radiative transfer in Planetary atmospheres

  6. NICMOS: transmission spectroscopy XO-1b, terminator Hitran 2010 - Cambridge Tinetti, et al., ApJ, 2010

  7. Thermal structure retrieval o Machalek et al., 2009 + Knutson et al., 2007 1500 K 1000 K Hitran 2010 - Cambridge Tinetti, et al., ApJ, 2010

  8. Non-LTE emissions of CH4 in giant planets ISO observation of CH4 non-LTE emission on Jupiter Drossart et al, ESA-SP 427, 1999 Hitran 2010 - Cambridge

  9. CH4 non LTE emission in exoplanets ? Swain et al, Nature, 2010 HD189733b Hitran 2010 - Cambridge

  10. Cassini Saturn spectroscopic observations in the infrared CIRS has two combined interferometers, operating in the far-infrared (10-600 cm-1) and mid-infrared (600-1400 cm-1). VIMS is an imaging visible and near infrared spectrometer (0.3-5 micron) Hitran 2010 - Cambridge

  11. Saturn 80°S at 100 and 300 km C2H2 Flasar et al., Sci. 2005 C4H2 et CH3C2H C2H6 Radiance (W cm-2 sr-1 / cm-1) C3H8 CO2 Hitran 2010 - Cambridge

  12. Saturn at 80°S 100 and 300 km CH4 CH3D Flasar et al., Sci. 2005 Radiance (W cm-2 sr-1 / cm-1) Hitran 2010 - Cambridge

  13. First results from Herschel in the solar system First publications in Astronomy & Astrophysics – May 2010

  14. Instruments et observations __ • Observatory mode  access from proposals • “Key Programs” (– x 100 h, “legacy”), priority • normal programs (AO 20 may 2010) ___ __ ___ _____ __ Hitran 2010 - Cambridge

  15. Neptune spectrum from PACS Lellouch et al., A&A 2010 Hitran 2010 - Cambridge

  16. Methane in the stratosphere of Neptune Lellouch et al. A & A 2010 Orton, Encrenaz et al. 2007

  17. Venus atmosphere • Venus Express observations A new start in Venus atmosphere observations after a long gap since Venera 15 and Vega russian missions Next mission Akatsuki (Jaxa) Launched on May 20 Hitran 2010 - Cambridge

  18. Venus NIR day side spectrum Venus Express/VIRTIS spectra in the NIR (day side) Most of the absorptions : CO2 ! Hitran 2010 - Cambridge

  19. Depression in the polar region Grey are VMC images N. Ignatiev Hitran 2010 - Cambridge Ignatiev et al., JGRE 2009

  20. Telluric planets : Venus thermal emission in the dark side • Thermal emission originating from the 0-45 km altitude range in spectral windows • Accurate knowledge of CO2 opacity is crucial • Weak allowed bands • Pressure-induced bands • Far wing line shape • Deep atmosphere of Venus Challenge for spectroscopy : CO2 up to 90 bars, 450 K at the surface Database : HITEMP, CDSD-750 VIRTIS-Mspectrum H2O CO2 H2O H2O CO2 CO2 CO2 H2O 1.0 m 1.27 m 1.18 m 1.74 m 2.3 m 1.10 m Hitran 2010 - Cambridge

  21. Venus nightside windows2.3 m • CFHT/FTS observations (Res = 0.15 cm-1) [Taylor et al. 1997] • Altitude range: 26-45 km • Absorbers: CO2, H2O, HDO, CO, OCS, SO2, HF CO2 Hitran 2010 - Cambridge

  22. Deep atmosphere of Venus by VIRTIS/Venus Express CO2 CO H2O HDO OCS SO2 Marq et al., JGRE, 2008 Hitran 2010 - Cambridge

  23. Venus day side observations at 4.3 micron : CO2non – LTE emissions Gilli, Lopez-Valverde et al., JGRE 2009 Hitran 2010 - Cambridge

  24. Gravity waves observed in CO2 non-LTE emission of Venus Day side up/night side down Center on South pole Polar vortex in red Garcia et al., JGRE, 2009 Hitran 2010 - Cambridge

  25. O2 intensity : night side emission of Venus at 1.27 micron Mean vertical brightness = 0.5 MR 1.27 micron emission of Venus Gérard et al., Icarus, 2009 05/06/2014 Hitran 2010 - Cambridge 25/20

  26. Piccioni et al., PNAS, 2008 Hitran 2010 - Cambridge

  27. Mars exploration in the XXIth century The War of the Worlds : the Revenge Mars Reconnaissance Orbiter (2006) Coming soon… Mars Science Laboratory (2011) Mars Trace Gas Orbiter (2016) Mars Odyssey (2002) Mars Express (2003) Mars Exploration rovers (2003) Hitran 2010 - Cambridge

  28. The infrared spectrum of Martian atmosphere Solar reflected Thermal CO2 H2O CO CO2 Hydrated silicates CO2 CO2 Reflected sunlight -> mineralogy Thermal emission -> T(z), winds ISO-SWS Lellouch et al., 2000

  29. The 1237-1243 cm-1 spectrum of Mars(TEXES, IRTF)All lines identified down to depths of 0.3%S/N > 1000 in the continuum H2O2, 10-7 synthetic TEXES data

  30. First IR detection of H2O2 on Mars H2O2 and CO2 lines at 1241.6 cm-1 H2O2 H2O2 CO2 Encrenaz et al. Icarus 2004

  31. Mars Trace Gas OrbiterNASA / ESA 2016 • Science objectives • Detection of trace molecules CH4, C2H2, C2H6, NO2, N2O, H2S, SO2, H2O, O3, isotopologues • Determine the type of activiy : geological, or biological from the molecular ratio • Characterize spatial and temporal variations • Find the correlations between trace species to constrain the chemistry • Localize the sources • Trace the origin of gases • Determine uncertainty of a landing mission for EXOMARS Hitran 2010 - Cambridge

  32. Some trace gases to search for with TGOnadir and limb observations • The spectral domain has been optimized for several simultaneous gas detection • Sensitivity to methane • 1ppb in 6 s  50 km2 cartography • 50 ppt in solar occultation mode for detection

  33. Conclusions about (exo)planetary atmospheres spectroscopy What is out there ? At first order : CO2 , CH4 , H2O , CO … but we still do not fully understand the spectroscopy of these molecules! • Isotopes, • line shapes, • CIA, • line mixing, • relaxation coefficients, • etc. Trace constituents Telluric planets : H2O2, OH, H2CO Giant planets : NH3, PH3, H2S Hitran 2010 - Cambridge

  34. Acknowledgements to • Bruno Bézard • Régis Courtin • Emmanuel Lellouch • Dominique Bockelee • Giovanna Tinetti • Athena Coustenis • Thérèse Encrenaz • Giuseppe Piccioni • Miguel Lopez-Valverde • Raphaël Garcia Hitran 2010 - Cambridge

More Related