1 / 30

Divide & Conquer Algorithms

An outline of divide and conquer algorithms, including MergeSort, linear space sequence alignment, four-Russians speedup, and constructing LCS in sub-quadratic time.

avictoria
Download Presentation

Divide & Conquer Algorithms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Divide & Conquer Algorithms

  2. Outline • MergeSort • Finding the middle point in the alignment matrix in linear space • Linear space sequence alignment • Block Alignment • Four-Russians speedup • Constructing LCS in sub-quadratic time

  3. Divide and Conquer Algorithms • Divide problem into sub-problems • Conquer by solving sub-problems recursively. If the sub-problems are small enough, solve them in brute force fashion • Combine the solutions of sub-problems into a solution of the original problem (tricky part)

  4. Sorting Problem Revisited • Given: an unsorted array • Goal: sort it

  5. Mergesort: Divide Step Step 1 – Divide log(n) divisions to split an array of size n into single elements

  6. Mergesort: Conquer Step • Step 2 – Conquer O(n) O(n) O(n) O(n) O(n logn) logn iterations, each iteration takes O(n) time. Total Time:

  7. Mergesort: Combine Step • Step 3 – Combine • 2 arrays of size 1 can be easily merged to form a sorted array of size 2 • 2 sorted arrays of size n and m can be merged in O(n+m) time to form a sorted array of size n+m

  8. Mergesort: Combine Step Combining 2 arrays of size 4 Etcetera…

  9. Merge Algorithm • Merge(a,b) • n1 size of array a • n2  size of array b • an1+1   • an2+1   • i  1 • j  1 • fork  1 to n1 + n2 • ifai < bj • ck  ai • i  i +1 • else • ck  bj • j j+1 • returnc

  10. Mergesort: Example 20 4 7 6 1 3 9 5 Divide 20 4 7 6 1 3 9 5 20 4 7 6 1 3 9 5 1 3 9 5 7 20 4 6 4 20 6 7 1 3 5 9 Conquer 4 6 7 20 1 3 5 9 1 3 4 5 6 7 9 20

  11. MergeSort Algorithm MergeSort(c) n size of array c ifn = 1 returnc left list of first n/2 elements of c right list of last n-n/2 elements of c sortedLeft  MergeSort(left) sortedRight MergeSort(right) sortedList  Merge(sortedLeft,sortedRight) returnsortedList

  12. MergeSort: Running Time • The problem is simplified to baby steps • for the i’th merging iteration, the complexity of the problem is O(n) • number of iterations is O(log n) • running time: O(n logn)

  13. Divide and Conquer Approach to LCS Path(source, sink) • if(source & sink are in consecutive columns) • output the longest path from source to sink • else • middle ← middle vertex between source & sink • Path(source, middle) • Path(middle, sink)

  14. Divide and Conquer Approach to LCS Path(source, sink) • if(source & sink are in consecutive columns) • output the longest path from source to sink • else • middle ← middle vertex between source & sink • Path(source, middle) • Path(middle, sink) The only problem left is how to find this “middle vertex”!

  15. Computing Alignment Path Requires Quadratic Memory Alignment Path • Space complexity for computing alignment path for sequences of length n and m is O(nm) • We need to keep all backtracking references in memory to reconstruct the path (backtracking) m n

  16. Computing Alignment Score with Linear Memory • Alignment Score • Space complexity of computing just the score itself is O(n) • We only need the previous column to calculate the current column, and we can then throw away that previous column once we’re done using it 2 n n

  17. Computing Alignment Score: Recycling Columns Only two columns of scores are saved at any given time memory for column 1 is used to calculate column 3 memory for column 2 is used to calculate column 4

  18. Crossing the Middle Line We want to calculate the longest path from (0,0) to (n,m) that passes through (i,m/2) where i ranges from 0 ton and represents the i-th row Define length(i) as the length of the longest path from (0,0) to (n,m) that passes through vertex (i, m/2) (i, m/2) Prefix(i) Suffix(i)

  19. Crossing the Middle Line (i, m/2) Prefix(i) Suffix(i) Define (mid,m/2) as the vertex where the longest path crosses the middle column. length(mid, m/2) = optimal length = max0i nlength(i)

  20. Computing Prefix(i) • prefix(i) is the length of the longest path from (0,0) to (i,m/2) • Compute prefix(i) by dynamic programming in the left half of the matrix store prefix(i) column 0 m/2 m

  21. Computing Suffix(i) • suffix(i) is the length of the longest path from (i,m/2) to (n,m) • suffix(i) is the length of the longest path from (n,m) to (i,m/2) with all edges reversed • Compute suffix(i) by dynamic programming in the right half of the “reversed” matrix store suffix(i) column 0 m/2 m

  22. Length(i) = Prefix(i) + Suffix(i) • Add prefix(i) and suffix(i) to compute length(i): • length(i)=prefix(i) + suffix(i) • You now have a middle vertex of the maximum path (i,m/2) as maximum of length(i) 0 i middle point found 0 m/2 m

  23. Finding the Middle Point

  24. Finding the Middle Point again

  25. And Again

  26. Time = Area: First Pass • On first pass, the algorithm covers the entire area Area = nm

  27. Time = Area: First Pass • On first pass, the algorithm covers the entire area Area = nm Computing prefix(i) Computing suffix(i)

  28. Time = Area: Second Pass • On second pass, the algorithm covers only 1/2 of the area Area/2

  29. Time = Area: Third Pass • On third pass, only 1/4th is covered. Area/4

  30. Geometric Reduction At Each Iteration • 1 + ½ + ¼ + ... + (½)k ≤ 2 • Runtime: O(Area)= O(nm) 5th pass: 1/16 3rd pass: 1/4 first pass: 1 4th pass: 1/8 2nd pass: 1/2

More Related