330 likes | 700 Views
2/34. Structure. Regression analysis: definition and examples Classical Linear RegressionLASSO and Ridge Regression (linear and nonlinear)Nonparametric (local) regression estimation: kNN for regression, Decision trees, SmoothersSupport Vector Regression (linear and nonlinear) Variable/featu
E N D
1. Regression Analysis
2. 2/34 Structure Regression analysis: definition and examples
Classical Linear Regression
LASSO and Ridge Regression (linear and nonlinear)
Nonparametric (local) regression estimation:kNN for regression, Decision trees, Smoothers
Support Vector Regression (linear and nonlinear)
Variable/feature selection (AIC, BIC, R^2-adjusted)
3. 3/34 Feature Selection, Dimensionality Reduction, and Clustering in the KDD Process
4. 4/34 Common Data Mining tasks
k-th Nearest Neighbour
Parzen Window
Unfolding, Conjoint Analysis, Cat-PCA
5. 5/34 Linear regression analysis: examples
6. 6/34 Linear regression analysis: examples
7. 7/34 The Regression task
8. 8/54 Classical Linear Regression (OLS)
9. 9/54 Classical Linear Regression (OLS)
10. 10/54 Classical Linear Regression (OLS)
11. 11/54 Classical Linear Regression (OLS)
12. 12/54 Classical Linear Regression (OLS)
13. 13/54 Classical Linear Regression (OLS)
14. 14/54 Classical Linear Regression (OLS):Multiple regression
15. 15/54 Classical Linear Regression (OLS):Ordinary Least Squares estimation
16. 16/54 Classical Linear Regression (OLS):Ordinary Least Squares estimation
17. 17/59
18. 18/59
19. 19/59
20. 20/59
21. 21/59 How to Choose k or h?
22. 22/59
23. 23/59
24. 24/59
25. 25/59
26. 26/59
27. SVR Study : Model Training, Selection and Prediction 27/59
28. 28/59
29. 29/34
30. 30/34
31. 31/34
32. 32/34
33. 33/34
34. 34/34 Conclusion / Summary / References