1 / 93

Chapter 5 Design using Transformation Technique – Classical Method

Chapter 5 Design using Transformation Technique – Classical Method. 0. time. Transient response. D( s ). G( s ). +. -. unity feedback. Steady-state response. Rule of Thumb. ex). Design by Emulation. Design specifications: Overshoot to a step input less than 16%.

awena
Download Presentation

Chapter 5 Design using Transformation Technique – Classical Method

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 5 Design using Transformation Technique – Classical Method

  2. 0

  3. time Transient response

  4. D(s) G(s) + - unity feedback Steady-state response

  5. Rule of Thumb ex)

  6. Design by Emulation • Design specifications: • Overshoot to a step input less than 16%. • Settling time to 1% to be less than 10sec. • Tracking error to a ramp input of slope 0.01 rad/sec to be • less than 0.01 rad. • 4. Sampling time to give at least 10 samples in a rise time.

  7. 0 -0.46 forbidden region

  8. R E C   c(t) u(k) r(t) e(k) e(t) T=0.2

  9. Bode plot of the continuous design for the antenna control 1 10 0 10 Magnitude -1 10 -2 10 -1 0 1 10 10 10 -80 -100 -120 Phase, degrees -140 -160 -180 -1 0 1 10 10 10

  10. T=0.2 T=1

  11. Direct Design by Root Locus in the z-plane • The method for continuous-time systems can be extended w/o modification • The effects of the system gain and/or sampling period can be investigated Performance 0 -1 1

  12. Overshoot 0 -1 1 Settling time

  13. -1 1

  14. Position error constant

  15. Velocity error constant Acceleration error constant

  16. pole -1 0 1 zero Large overshoot Poor dynamic response Errors are decreased Small steady-state error against Good transient response

  17. ex) Antenna system in p. 228 of Franklin’s

  18. Discrete root locus with and without compensation 1 0.5 p /T 0.6 p /T 0.4 p /T 0.8 0.1 0.7 p /T 0.3 p /T 0.2 0.3 0.6 0.8 p /T 0.4 0.2 p /T 0.5 0.4 0.6 0.7 0.9 p /T 0.1 p /T 0.8 0.2 0.9 p /T Imaginary Axis 0 p /T -0.2 0.9 p /T 0.1 p /T -0.4 0.8 p /T 0.2 p /T -0.6 0.7 p /T 0.3 p /T -0.8 0.6 p /T 0.4 p /T 0.5 p /T -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Real Axis

  19. -1 1 0 0.61

  20. Root locus for antenna design 1 0.5 p /T 0.6 p /T 0.4 p /T 0.8 0.1 0.7 p /T 0.3 p /T 0.2 0.3 0.6 0.4 0.8 p /T 0.2 p /T 0.5 0.4 0.6 0.7 0.9 p /T 0.8 0.1 p /T 0.2 0.9 p /T Imaginary Axis 0 p /T -0.2 0.9 p /T 0.1 p /T -0.4 0.8 p /T 0.2 p /T -0.6 0.7 p /T 0.3 p /T -0.8 0.6 p /T 0.4 p /T 0.5 p /T -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Real Axis

  21. Root locus for compensated Antenna Design 1 0.5 p /T 0.6 p /T 0.4 p /T 0.8 0.1 0.7 p /T 0.3 p /T 0.2 0.3 0.6 0.4 0.8 p /T 0.2 p /T 0.5 0.4 0.6 0.7 0.9 p /T 0.8 0.1 p /T 0.2 0.9 p /T Imaginary Axis 0 p /T -0.2 0.9 p /T 0.1 p /T -0.4 0.8 p /T 0.2 p /T -0.6 0.7 p /T 0.3 p /T -0.8 0.6 p /T 0.4 p /T 0.5 p /T -1 -1 -0.5 0 0.5 1 Real Axis

  22. Step Response of Compensated Antenna 1.5 1 0.5 0 OUTPUT, Y and CONTROL, U/10 -0.5 -1 -1.5 0 2 4 6 8 10 12 14 16 18 20 TIME (SEC)

  23. Root locus for Compensated Antenna Design 0.76 0.64 0.5 0.34 0.16 1 0.86 0.8 0.6 0.94 0.4 0.985 0.2 1.4 1.2 1 0.8 0.6 0.4 0.2 Imaginary Axis 0 -0.2 0.985 -0.4 0.94 -0.6 -0.8 0.86 -1 0.64 0.5 0.34 0.16 0.76 -1 -0.5 0 0.5 1 Real Axis

  24. Step response of compensated Antenna Design 1.5 1 0.5 OUTPUT, Y and CONTROL, U/10 0 -0.5 -1 0 2 4 6 8 10 12 14 16 18 20 TIME (SEC)

  25. Root locus for compensated Antenna Design 1.2 0.64 0.5 0.34 0.16 1 1 0.76 0.8 0.8 0.86 0.6 0.6 0.4 0.94 0.4 0.2 0.985 0.2 Imaginary Axis 0 -0.2 0.985 0.2 -0.4 0.94 0.4 -0.6 0.6 0.86 -0.8 0.8 0.76 -1 1 0.64 0.5 0.34 0.16 1.2 -1 -0.5 0 0.5 1 Real Axis

  26. Step response for compensated antenna Design 2 1.5 1 0.5 OUTPUT, Y and CONTROL, U/10 0 -0.5 -1 0 2 4 6 8 10 12 14 16 18 20 TIME (SEC)

  27. Frequency Response Methods 1. The gain/ phase curve can be easily plotted by hand. 2. The frequency response can be measured experimentally. 3. The dynamic response specification can be easily interpreted in terms of gain/ phase margin. • The system error constants and can be read directly from the low frequency asymptote of the gain plot. 5. The correction to the gain/phase curves can be quickly computed. 6. The effect of pole/ zero gain changes of a compensator can be easily determined. Note : 1, 5, 6 above are less true for discrete frequency response design using z - transform.

  28. Nyquist Stability Criterion Continuous case zeros of the closed-loop characteristic equation, n(s) + d(s) =poles of the closed-loop system, n(s)+d(s) open-loop system known closed-loop system characteristic equation

  29. Z (unknown)= # of unstable zeros (same direction) of 1 + K D(s) G(s) ( or # of unstable poles of H(s) ) P(known) = # of unstable poles (opposite direction) of 1 + K D(s) G(s) ( or # of unstable poles of KD(s)G(s)) N(known after mapping) = # of encirclement (same direction) of the origin of 1+KD(s)G(s) ( or -1 of KD(s)G(s) ) Z must be zero for stability

  30. -1 -1/K S-plane 1+KD(s)G(s)-plane KD(s)G(s)-plane unstable poles 0 D(s)G(s)-plane Z – P =N orZ = P + N

  31. Discrete case ( The ideas are identical ) • Unstable region of the z-plane is the outside of the unit circle • Consider the encirclement of the stable region. • N = { # of stable zeros } - { # of stable poles} • = { n– Z } – { n– P } • = P – Z Z= P– N • In summary, • Determine the number, P, of unstable poles of KDG. • 2. Plot KD(z)G(z) for the unit circle, and . • 3. Set N equal to the net number of CCW encirclements of the point • -1 on the plot • 4. Compute Z = P – N. This system is stable iffZ =0.

  32. ex) p. 241 (Franklin’s) The unit feedback discrete system with the plant transfer function with sampling rate ½Hz and zero-order hold

  33. Nyquist plot from Example 1 using contour 1 0.8 0.6 0.4 0.2 0 Imaginary Axis -0.2 -0.4 -0.6 -0.8 -1 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 Real Axis

  34. Design Spec. in the Frequency Domain Gain Margin (GM) : The factor by which the gain can be increased before the system to go unstable Phase Margin (PM): A measure of how much additional phase lag or time delay can be tolerated in the loop before instability results. ex) p. 243

  35. GM=1.8, PM=18 Bode plot Nyquist plot

More Related