1 / 37

BPM Signal Processing with Log Amps

BPM Signal Processing with Log Amps. DITANET Workshop CERN 16-18 January 2012 José Luis Gonzalez – CERN/BE/BI. Outline. Introduction Logarithmic Amplifiers Basics Position Measurement Electrostatic BPM Principle Log Derivation Position Measurement with Log-Amps Shoe-box and Button BPM

axel
Download Presentation

BPM Signal Processing with Log Amps

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BPM Signal Processing withLog Amps DITANET Workshop CERN 16-18 January 2012 José Luis Gonzalez – CERN/BE/BI

  2. Outline • Introduction • Logarithmic Amplifiers Basics • Position Measurement • Electrostatic BPM Principle • Log Derivation • Position Measurement with Log-Amps • Shoe-box and Button BPM • Applications • Summary JL Gonzalez - CERN/BE/BI

  3. Introduction • BPM signal processing methods • Difference over Sum • Multiplexing (RF Receivers) • Normalization (Amplitude to Time Conversion) • Log processing (High Dynamic Range) • Main Applications • Orbit Measurements • Trajectory JL Gonzalez - CERN/BE/BI

  4. Logarithmic Amplifiers • What do they do? • Convert signals of high dynamic range to a substantially smaller dynamic range • The output is readily scaled to represent the decibel value of the input • This is a nonlinear conversion of the signal representation From Barrie Gilbert (Analog Devices) JL Gonzalez - CERN/BE/BI

  5. Logarithmic Amplifiers • Fundamental Function where VWis the Output voltage VX . . . . . Input voltage VY. . . . . Slope voltage VZ. . . . . Log Intercept voltage JL Gonzalez - CERN/BE/BI

  6. The Basic Logarithmic Relationship JL Gonzalez - CERN/BE/BI

  7. Logarithmic Function Approximation 4AEK 3AEK A EK 2AEK • The backbone is a chain of simple Amplifier Cells • FUNCTION is a type of PIECEWISE LINEAR APPROXIMATION JL Gonzalez - CERN/BE/BI

  8. The A/0 Amplifier (Limiter) JL Gonzalez - CERN/BE/BI

  9. Progressive Compression 4-Stage Example Vx very low (< EK) • Linear response: VW = (1+A+A2+A3+A4)VX • EK remains hidden JL Gonzalez - CERN/BE/BI

  10. Progressive Compression 4-Stage Example • For Vx = EK/A3 • Then VW = (A+1+A-1+A-2+A-3)EK JL Gonzalez - CERN/BE/BI

  11. Progressive Compression 4-Stage Example • For Vx = EK/A2 • Then VW = (2A+1+A-1+A-2)EK JL Gonzalez - CERN/BE/BI

  12. Progressive Compression 4-Stage Example • For Vx = EK • Then VW = (4A+1)EK JL Gonzalez - CERN/BE/BI

  13. Progressive Compression 4-Stage Example • For Vx > EK • Then VW = 4AEK + Vx JL Gonzalez - CERN/BE/BI

  14. Log-Amp Slope and Intercept • Slope (V/dB): • Intercept (V): Adding an offset to the output lowers the intercept JL Gonzalez - CERN/BE/BI

  15. Position Measurement Principle • Electrostatic BPM From P. Forck et al. (GSI, Darmstadt, DE) JL Gonzalez - CERN/BE/BI

  16. Position Measurement Principle • Logarithmic derivation of normalized position JL Gonzalez - CERN/BE/BI

  17. Position Measurement Principle BP Filter LogAmp A Vout ADC Diff.Amp. BP Filter B LogAmp Position = K*Vout JL Gonzalez - CERN/BE/BI

  18. Theoretical Log Response JL Gonzalez - CERN/BE/BI

  19. Log Conformance Error JL Gonzalez - CERN/BE/BI

  20. Button BPM Response a=25mm, =00, =300 B A JL Gonzalez - CERN/BE/BI

  21. Button BPM Linearity Error a=25mm, =00, =300 B A JL Gonzalez - CERN/BE/BI

  22. Commercial Log-Amp From Bergoz (sales@bergoz.com) JL Gonzalez - CERN/BE/BI

  23. CERN Transfer Lines Log-Amps AD8306 BPM Front-end From Thierry Bogey (CERN) JL Gonzalez - CERN/BE/BI

  24. Log-Amp performance AD8306 • 100 dB Dynamic Range (±3dB) : –91 to +9 dBV • Input Frequency Range: 5-400MHz • ±0.4 dB Log Linearity: -67 to +13dBm • Stable Log Scaling: 20 mV/dB Slope • Input noise: < 1.5 nV/√Hz JL Gonzalez - CERN/BE/BI

  25. Front-End Characteristics • Position and Intensity available • Large dynamic range without requiring gain switching • Two integration times are implemented (200 ns and 1 µs) • Auto-triggered • No requirement for external timing in the tunnel • Calibrator • Remotely triggered • Single or 40 MHz LHC bunch simulation • It offers 0 dB (center) and ± 5 dB ratio (slope) • Analog to digital conversion • Serial transmission of ADC data to surface buildings JL Gonzalez - CERN/BE/BI

  26. CNGS Beam Acquisition Example 10 s Batch (2.2E13 protons), 2000 bunches spaced by 5 ns Log A 2µS 2µS 2µS 2µS 2µS Pos turn 1 Pos turn 2 Pos turn 4 • Pos ≈ Log A- Log B Pos turn 3 Pos turn 5 • Integrator Out 1µS • Integrator Gate JL Gonzalez - CERN/BE/BI

  27. Dual Log-Amp Chips • Analog Devices AD8302 (Gain & Phase Det.) • Dynamic Range (60dB): -60 to 0dBm • Input Frequency Range: 0 to 2.7GHz • Scaling: 30 mV/dB • Small Signal Envelope Bandwidth: • DC to 30 MHz • Rise/Fall time (10%–90%): • 20 dB change: 60 ns • Settling time to 1%: • 60 dB change: 300 ns • Typical Nonlinearity (100MHz) • < 0.5 dB over 55 dB • < 0.2dB over 42 dB JL Gonzalez - CERN/BE/BI

  28. Dual Log-Amp Chips • Analog Devices ADL5519 (Dual Log Detector) • Dynamic Range (60dB): -55 to 5dBm • Input Frequency Range: 0.1-10GHz • Scaling: 22 mV/dB • Small Signal Envelope Bandwidth: • DC to 50 MHz • Rise/Fall time (20%–80%): • 40 dB change: 16 ns • Output noise: 10 nV/√Hz • Typical Nonlinearity • < 0.5 dB over 47 dB • < 0.2dB over 40 dB JL Gonzalez - CERN/BE/BI

  29. Dual Log-Amp Chips • Maxim MAX2016 (Dual Log Detector) • Dynamic Range (80dB): -70 to 10dBm • Input Frequency Range: 0.1-2.5GHz • Scaling: 20 mV/dB • Small Signal Envelope Bandwidth: • DC to 22 MHz • Rise/Fall time (20%–80%): • Log-output (8dB): 15ns • Diff-output (30 dB): 35 ns • Settling time to ±0.5dB: • Log-output (60dB): 100ns • Diff-output (30 dB): 300 ns JL Gonzalez - CERN/BE/BI

  30. SPS Beams • Protons (14 or 26-450GeV/c) charge dynamic range 54 dB (1e9 – 5e11) • RF swing: 199.94 or 200.26MHz  200.39MHz • Frevswing: 43.278 or 43.347kHz  43.375kHz • LHC-Ions Pb82+ (17.1-450GeV/c) charge dynamic range 46 dB (1e8 – 2e10) • RF swing: 199.93MHz  200.39MHz • Frev swing: 42.967kHz  43.375kHz JL Gonzalez - CERN/BE/BI

  31. SPS BPM Front-End JL Gonzalez - CERN/BE/BI

  32. Summary • Irradiation of a set of these components is on going to select the most robust • Front-end prototypes are under development • Log Amps are very powerful • Simple implementation • Wide dynamic range • Limitations • Don’t allow direct single bunch measurement yet JL Gonzalez - CERN/BE/BI

  33. Thanks for your attention! JL Gonzalez - CERN/BE/BI

  34. Spare slides JL Gonzalez - CERN/BE/BI

  35. Lead Ion Beam Acquisition 2 Ion Bunches (2x1.3E10 charges) spaced by 200 ns Integrator Gate • Pos ≈ Log A- Log B 200nS • Pb54 Ion Beam • Log A JL Gonzalez - CERN/BE/BI

  36. SPS Beam Position Monitors Total = 216 BPMs: 6 x 36 slots • Current MOPOS acquisition channels: 240 [6 x 40 slots] • Future needs [2-plane BPMs] ≥ 432 channels JL Gonzalez - CERN/BE/BI

  37. SPS BPM Resolution & Accuracy Resolution of the BPM system over ±15 mm aperture • Resolution for large intensity beams (>2.1010 p/b) • Orbit mode (averaging over 40 turns): 0.1 mm BPH [Na=77mm]: 0.1% BPV [Na=41.5mm]: 0.2% • Trajectory mode (single turn): 0.4 mm (should be much better in the center) BPH: 0.5% BPV: 1% • Resolution for single bunches[low/very low intensity] (LHC pilot [2.109 p], Pb ions [1…5.108 charges]) • Orbit mode (averaging over 40 turns): 0.4 mm BPH: 0.5% BPV: 1% • Trajectory mode (single turn): 1 mm BPH: 1.3% BPV: 2.4% JL Gonzalez - CERN/BE/BI

More Related