520 likes | 686 Views
Bridging Theory in Practice. Transferring Technical Knowledge to Practical Applications. Advanced Power Dissipation and AC Thermal Analysis. Advanced Power Dissipation and AC Thermal Analysis. Intended Audience:
E N D
Bridging Theory in Practice Transferring Technical Knowledge to Practical Applications
Advanced Power Dissipation and AC Thermal Analysis Intended Audience: • Engineers interested in advanced thermal design under AC (variable duty cycle and transient) conditions • A basic knowledge of DC thermal analysis is required Topics Covered: • Modeling thermal performance with electrical parameters • Explanation of thermal RC networks • Introduction of the Zth Diagram • AC thermal calculations • Complex waveform (superposition principle) thermal calculations Expected Time: • Approximately 60 minutes
Advanced Power Dissipation and AC Thermal Analysis • Electrical Parameters vs. Thermal Parameters • Thermal Resistance and Capacitance Networks • Understanding the Zth Diagram • Example AC Thermal Calculations • Complex Waveforms and Superposition
Electrical vs. Thermal DC Parameters Electrical Parameters Thermal Parameters + + V T R Rth I PD - - V = I R R = Electrical Resistance () V = Potential Difference (V) I = Current (A) T = PD Rth Rth = Thermal Resistance (C/W) T = Temperature Difference (C) PD = Power Dissipated (W)
Electrical Resistance vs. Thermal Resistance Electrical Resistance Thermal Resistance PD I A A + + } d } d T V - - R Rth th I = Current A = Area d = Thickness = Electrical Conductivity R = Electrical Resistance () PD = Power Dissipated A = Area d = Thickness th = Thermal Conductivity Rth = Thermal Resistance (C/W)
Electrical Circuits vs. Thermal Circuits Electrical Circuits Thermal Circuits + + V T R Rth I PD - - I = 10A R = 1 V = IR V = (10A)(1) = 10V 10V Potential Difference PD = 10W Rth = 1C/W T = PDRth T = (10W)(1C/W) = 10C 10C Temperature Difference
Electrical vs. Thermal Parameters + + T V E Q Cth C - - Electrical Parameters Thermal Parameters C = Capacitance (Farads = A-sec / V) Cth = Thermal Capacitance (Joules / C = Watts-sec / C)
Advanced Power Dissipation and AC Thermal Analysis • Electrical Parameters vs. Thermal Parameters • Thermal Resistance and Capacitance Networks • Understanding the Zth Diagram • Example AC Thermal Calculations • Complex Waveforms and Superposition
Thermal Resistance & Capacitance p+ Well Cth1 - Rth1 Silicon Cth2 – Rth2 Example Silicon Wafer Cross Section Die Attach Cth3 – Rth3 Leadframe Metal Leadframe
Thermal RC Network - Internal Rth1 Rth2 Rth3 Tjunction PD Chip T Cth1 Cth2 Cth3 Temperature ~ Voltage Power ~ Current Tambient
Thermal RC Network – Total Rth1 Rth2 Rth3 Rinteface Rheatsink Tjunction Tcase PD Chip T Cth1 Cth2 Cth3 Cinterface Cheatsink Heatsink Tambient Temperature ~ Voltage Power ~ Current
Junction Temperature Calculations Rth1 Rth2 Rth3 Tjunction Tcase PD Chip T Cth1 Cth2 Cth3 Heatsink Tambient With temperature analogous to voltage, T Is determined by the PD and the RC network
Junction Temperature Calculations Rth1 Rth2 Rth3 Tjunction Tcase PD Chip T Cth1 Cth2 Cth3 Heatsink Tambient The maximum junction temperature is specified in the absolute maximum section of the data sheet (Tj,max)
Junction Temperature Calculations Tjc Rth1 Rth2 Rth3 Tjunction Tcase PD Chip T Cth1 Cth2 Cth3 Heatsink Tambient The device junction-to-case thermal resistance (Rthjc) is specified in the datasheet and determines Tjc. Rthjc is usually valid for DC only
Junction Temperature Calculations Tca Rth1 Rth2 Rth3 Tjunction Tcase PD Chip T Cth1 Cth2 Cth3 Heatsink Tambient The external case-to-ambient thermal resistance, (Rthca) is determined by the heatsink. This determines the temperature change from the case to the ambient.
DC Junction Temperature Calculations Rth1 Rth2 Rth3 Tjunction Tcase PD Chip T Heatsink Tambient Under DC conditions, power and temperature reach steady state conditions and the thermal capacitors are removed from the circuit model
DC Junction Temperature Calculation • Power Dissipation PD = Ids2Rdson = (5A)2(24m) = 0.6W • Thermal Resistance Rthja = 55 C/W • Junction Temperature Tjunction = Tambient + PDRthja Tjunction = 85C + (0.6W)(55C/W) Tjunction = 85C + 33C = 118C DC Calculations are relatively simple
AC Junction Temperature Calculation of Transfer Function Rth1 Rth2 Rth3 Tjunction Tcase PD Chip T Cth1 Cth2 Cth3 Zth(j) = ? Zth(t) = ? Heatsink Tambient
Simplified AC Thermal RC Network R’th1 R’th2 R’th3 Tjunction Tcase PD Chip T C’th1 C’th2 C’th3 Heatsink Tambient Thermal capacitance now in parallel with thermal resistance
Simplified AC Thermal RC Network R’th1 R’th2 R’th3 Tjunction Tcase PD Chip T C’th1 C’th2 C’th3 Heatsink Tambient The new RC component values of the simplified network are obtained by mathematical transformations. They do NOT refer to any physical layer. Together, they describe the overall thermal behavior and performance of the device and heatsink.
Simplified AC Thermal RC Network R’th1 R’th2 R’th3 Tjunction Tcase PD Chip T C’th1 C’th2 C’th3 Frequency Domain Heatsink Tambient Time Domain
Zth P(t) Tj(t) AC Temperature Calculation Simplified Transfer Function T(t)=PD(t)Zth(t)
Advanced Power Dissipation and AC Thermal Analysis • Electrical Parameters vs. Thermal Parameters • Thermal Resistance and Capacitance Networks • Understanding the Zth Diagram • Example AC Thermal Calculations • Complex Waveforms and Superposition
Create test set-up for integrated circuit package types Power is generated in the integrated circuit for defined lengths of time The resulting temperature rise is measured A thermal impedance (Zth) diagram is generated Zth P(t) Tj(t) Development of the Zth Diagram
100.0 10.0 1.0 Zthja (C / W) Duty Cycle 50% 20% 0.1 10% 5% 2% 1% Single Pulse 0.01 tpulse (sec) 1E-5 1E-3 1E-1 1E+1 1E+3 Zth Diagram for the TO-263 Package
P(t) PD tpulse Duty Cycle 50% 20% 10% 5% 2% 1% Single Pulse Zth Diagram for the TO-263 Package 100.0 Single Pulse 10.0 1.0 Zthja (C / W) 0.1 0.01 tpulse (sec) 1E-5 1E-3 1E-1 1E+1 1E+3
P(t) PD tpulse T Duty Cycle 50% 20% 10% 5% 2% 1% Zth Diagram for the TO-263 Package 100.0 Periodic event: 10.0 1.0 Zthja (C / W) Duty Cycle: 0.1 Single Pulse 0.01 tpulse (sec) 1E-5 1E-3 1E-1 1E+1 1E+3
Zth Diagrams for Different Packages TO-263-5-1 tp = 1s Zthja 2C/W TO-252-3-1 tp = 1s Zthja 4C/W SOT-223 tp = 1s Zthja 30C/W SO-8 tp = 1s Zthja 65C/W
Advanced Power Dissipation and AC Thermal Analysis • Electrical Parameters vs. Thermal Parameters • Thermal Resistance and Capacitance Networks • Understanding the Zth Diagram • Example AC Thermal Calculations • Complex Waveforms and Superposition
Single Pulse in aTO-263 Package PD tpulse 400W tpulse = 200µs Tiunction(t) Tpeak Tpeak = ? 25C
Duty Cycle 50% 20% 10% 5% 2% 1% Single Pulse Single Pulse in aTO-263 Package 100.0 10.0 tpulse = 2E-4 s Zthja 0.083 C/W 1.0 Zthja (C / W) Duty Cycle 50% 20% 0.1 10% 5% 2% 1% Single Pulse 0.01 tpulse (sec) 1E-5 1E-3 1E-1 1E+1 1E+3
Power Dissipation PD = 400W Thermal Resistance Zthja = 0.083 C/W Junction Temperature Tjunction,peak = Tambient + PDZthja Tjunction,peak = 25C + (400W)(0.083C/W) Tjunction,peak = 25C + 33C = 58C Single Pulse in aTO-263 Package
Single Pulse – TO-263 Package Saber Simulation 55C 400W 350W 50C 300W Tjunction,peak = 55C 45C 250W 200W 40C 150W 35C 100W 30C PD,max = 400W 50W 25C 0W 0 100 200 300 400 500 600 700 Time (s)
50% Duty Cycle in aTO-263 Package tpulse = 200µs PD 1.44W tperiod = 400µs Tiunction(t) Tpeak Tpeak = ? 25C
tpulse = 2E-4 s Zthja 23 C/W 50% Duty Cycle in aTO-263 Package 100.0 10.0 1.0 Zthja (C / W) Duty Cycle 50% 20% 0.1 10% 5% 2% 1% Single Pulse 0.01 tpulse (sec) 1E-5 1E-3 1E-1 1E+1 1E+3
50% Duty Cycle in aTO-263 Package • Power Dissipation PD = 1.44W • Thermal Resistance Zthja = 23 C/W • Junction Temperature Tjunction = Tambient + PDZthja Tjunction = 25C + (1.44W)(23C/W) Tjunction = 25C + 33C = 58C
Advanced Power Dissipation and AC Thermal Analysis • Electrical Parameters vs. Thermal Parameters • Thermal Resistance and Capacitance Networks • Understanding the Zth Diagram • Example AC Thermal Calculations • Complex Waveforms and Superposition
Complex Pulse-SuperpositionMOSFET Turn On • VIN goes HI • IDS increases • VDS decreases • PLOSS spikes 1. VIN 4. PLOSS 2. IDS 3. VDS IDS
Complex Pulse-SuperpositionMOSFET Turn On Pulse 1: tSTART 20µS tSTOP 50µS Pulse 2: tSTART 25µS tSTOP 50µS Pulse 3(neg): tSTART 40µS tSTOP 50µS Pulse 4(neg): tSTART 45µS tSTOP 50µS 1. VIN 4. PLOSS 2. IDS 3. VDS IDS
Complex Pulse-SuperpositionMOSFET Turn On t=5µs At t = 5µs: tPULSE,1 = 5µsec tPULSE,2 = tPULSE,3 = tPULSE,4= 0 TJ1(5µs) = ZTH(5µs)*PPULSE,1 Power Time
Complex Pulse-SuperpositionMOSFET Turn On t=20µs At t = 20µs: tPULSE,1 = 20µsec tPULSE,2 = 15µsec tPULSE,3= tPULSE,4 = 0 TJ2(20µs) = ZTH(20µs)*PPULSE,1 + ZTH(15µs)*PPULSE,2 Power Time
Complex Pulse-SuperpositonMOSFET Turn On t=25µs At t = 25µs: tPULSE,1 = 25µsec tPULSE,2 = 20µsec tPULSE,3 = 5µsec tPULSE,4 = 0 TJ3(25µs) = ZTH(25µs)*PPULSE,1 + ZTH(20µs)*PPULSE,2 - ZTH(5µs)*PPULSE,3 Power Time
Complex Pulse-SuperpositonMOSFET Turn On t=30µs At t = 30µs: tPULSE,1 = 30µsec tPULSE,2 = 25µsec tPULSE,3 = 10µsec tPULSE,4 = 5µsec TJ4(30µs) = ZTH(30µs)*PPULSE,1 + ZTH(25µs)*PPULSE,2 - ZTH(10µs)*PPULSE,3 - ZTH(5µs)*PPULSE,4 Power Time
Complex Pulse-SuperpositonMOSFET Turn On Pulse 1: tSTART 20µS tSTOP 50µS Pulse 2: tSTART 25µS tSTOP 50µS Pulse 3(neg): tSTART 40µS tSTOP 50µS Pulse 4(neg): tSTART 45µS tSTOP 50µS TJ2 TJ1 TJ3 4. PLOSS TJ4 IDS
Advanced Power Dissipation and AC Thermal Analysis • Electrical Parameters vs. Thermal Parameters • Thermal Resistance and Capacitance Networks • Understanding the Zth Diagram • Example AC Thermal Calculations • Complex Waveforms and Superposition
Thank you! www.btipnow.com