1 / 37

Nearly Tri-bimaximal Mixing & Small Masses of Neutrinos

KITPC Program on Neutrino Physics 2008.9.1-9.21. Nearly Tri-bimaximal Mixing & Small Masses of Neutrinos. Yue-Liang Wu Kavli Institute for Theoretical Physics China (KITPC) Institute of Theoretical Physics Chinese Academy of Sciences. 78 Years Old Neutrino.

aysha
Download Presentation

Nearly Tri-bimaximal Mixing & Small Masses of Neutrinos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KITPC Program on Neutrino Physics 2008.9.1-9.21 Nearly Tri-bimaximal Mixing & Small Masses of Neutrinos Yue-Liang Wu Kavli Institute for Theoretical Physics China (KITPC) Institute of Theoretical Physics Chinese Academy of Sciences

  2. 78 Years Old Neutrino 1930 Pauli (30 years old): Neutrino withs=1/2、NWIP、m < m_e To solve energy conservation problem and spin- statistical probleminvolved in  decay 1933 Fermi: H_3  He_3 + e + anti-  1957 T.D.Lee & C.N.Yang: Parity Non-conservation(NP) C.S. Wu: Experimental Test 1957 Landau, Lee & Yang, Salam Two Component Theory of Massless Neutrino m_ =0, Maximal Parity Violation 1958 Feynman-Gell-Mann, Marshak-Sudarshan V-A Theory 1967 GWS Standard Model: SU(2)_L x U(1) (NP) Based on Massless Neutrinos

  3. 1957 Pontecorvo Massive neutrinos、Neutrino Mixing & Oscillations _e  anti-_e 1957 R.Davis: Reactor Experiment anti-  + Cl_37  e + Ar_37 1962 Lederman, Schwartz & Steinberge Observed _ at Brookhaven (NP) 1962 MNS – Maki-Nakagawa-Sakata Lepton Mixing Angle: 1967 Pontecorvo _e _ Solar Neutrino Puzzle: ½

  4. 1967 R. Davis Solar Neutrino Experiment (NP) • 1969 Gribov & Pontecorvo Majorana-type Neutrino Mixing • 1976 Bilenky & Pontecorvo • Dirac-type Neutrino Mixing • 1978 L. Wolfenstein; 1986 S.P. Mikheyev and A. Yu. Smirnov Matter Effects of Neutrino Oscillations (MSW) • 1979 See-Saw Mechanism & GUTs • 1994: ‘1,3,5 ’ - Massive, ‘ 2,4,6 ’ -Massless, 7 - No think 1998.6Super-Kamiokande Experiment Evidence of Massive Neutrinos & Neutrino Oscillations Answer Question: Massive or Massless?

  5. Unknown Questions:  Neutrinos are Dirac or Majorana?  Absolute Values of Neutrino Masses? Hierarchy or Degeneracy?  CP Violation in Lepton-Neutrino Sector?  How Many Neutrinos,Sterile Neutrinos?  Leptogenesis and Matter-Antimatter Asymmetry?  Rules of Neutrino in Astrophysics and Cosmology ?

  6. Theoretical Questions Why neutrino masses are so small Why neutrino mixings are so large in comparison with quark mixings 23is exactly maximal?  13?,Ue3 0?  Mass hierarchy m312 > 0 ?m312 < 0?

  7. Flavor changing at 5.3s Solar Neutrino: SNO Electron neutrino generated from Sun arXiv:nucl-ex/0610020

  8. Reactor neutrino: KamLAND arXiv:0801.4589 A scaled reactor spectrum without distortions from neutrino oscillation is excluded at more than 5σ! Oscillation parameters:

  9. Atmosphere Neutrino: Super-K Oscillation parameters:

  10. Neutrino Oscillation General Formalism: J. Valle et al. hep-ph/0405172, updated at Sep 2007 Solar: Super-K, SNO Atmosphere: Super-K Reactor:KamLAND, CHOOZ Accelerator:K2K,MINOS

  11. Issues in Neutrino Physics 1. Dirac / Majorana Neutrinoless Double Beta Decay 2. Mass scale: m1 Neutrinoless Double Beta Decay, Single Beta Decay, Cosmology 3. Sterile neutrinos, LSND? MiniBooNE Excludes at 98% CL two-neutrino appearance oscillations as an explanation of the LSND anomaly. arXiv:0704.1500 (3+1): inconsistency at the level of 4σ. (3+2) ,(3+3): severe tension at the level of more than 3σ. arXiv:0705.0107

  12. Neutrino Masses 1. Cosmology (CMB+LSS): Planck: 0.025-0.1 eV 2. Single Beta Decay KATRIN: 0.2 eV 3. Neutrinoless Double Beta Decay CUORE: 0.02-0.1 eV Strumia-Vissani arXiv:hep-ph/0503246

  13. Global fits: 3σ Kam-Biu Luk, Jan 8 2007 Int'l Symp on Neutrino Physics and Neutrino Cosmology arXiv:hep-ex/0509019

  14.  N Seesaw Mechanism Type II? Type III? Leptogenesis Mechanism Fukugita & Yanagida (1986):

  15. Other Mechanism for Neutrino Masses E. Ma, PRD 73, 077301, 2006 Two Higgs doublets Model: S or A may be Dark Matter! R. Barbieri, L. Hall and V.S. Rychkov, PRD 74, 015007, 2007 3 loop generation of neutrino masses: L.M. Krauss, S. Nasri and M. Trodden, PRD 67, 085002, 2003 Right-handed neutrino as Dark Matter!

  16. Family Symmetry Tri-Bimaximal Mixing: (Harrison,Perkins and Scott) Friedberg-Lee Symmetry: Some papers: Xing, Zhang, Zhou, PLB641 Luo, Xing, PLB 646 C.S. Huang, T.J. Li, W. Liao and S.H. Zhu, arXiv:0803.4124 hep-ph/0606071 Invariant under Friedberg-Lee symmetry: z a space-time independent constant element of the Grassmann algebra

  17. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. {\bf B 530}, 167 (2002) • Z.-Z. Xing, Phys. Lett. {\bf B533}, 85(2002). • P. F. Harrison and W.G. Scott, Phys. Lett. {\bf B535},163(2002). • P.F. Harrison and W. G. Scott, Phys. Lett. {\bf B557},76(2003). • X. G. He and A. Zee, Phys. Lett. {\bf B560}, 87(2003). • C.I. Low and R. R. Volkas, Phys. Rev. {\bf D68}, 033007 (2003). • E. Ma, Phys. Rev. {\bf D70}, 031901R(2004); E.Ma, hep-ph/0701016 • G. Altarelli and F. Feruglio, Nucl. Phys. {\bf B720}, 64(2005); • E. Ma, Phys. Rev. D72, 037301 (2005).; • E. Ma, Mod.\ Phys.\ Lett.\ A 20, 2601 (2005) • A. Zee, Phys. Lett. {\bf B630}, 58 (2005). • E. Ma, Phys.\ Rev.\ D {\bf 73}, 057304 (2006). • G. Altarelli and F. Feruglio, Nucl. Phys. {\bf B741}, 215(2006). • W. Grimus and L. Lavoura, {\bf JHEP}, 0601:018(2006). • J.E. Kim and J.-C. Park, {\bf JHEP} 0605:017(2006). • N. Singh, M. Rajkhowa and A. Borach, hep-ph/0603189. • R. Mohapatra, S. Naris and Y.-H. Yu, Phys.Lett. {\bf B639} 318 (2006). • P. Kovtun and A. Zee, Phys.Lett. {\bf B640} (2006) 37. • N. Haba, A. Watanabe and K. Yoshioka, Phys.Rev.Lett. 97 (2006) 041601. • X.G. He, Y.Y. Keum and R. Volkas, {\bf JHEP}, 0604:039(2006). • Varizelas, S.-F. King and G.G. Ross, Phys.Lett. B644 (2007) 153. • R. Friedberg and T. D. Lee, arXiv:hep-ph/0606071; arXiv:hep-ph/0705.4156 • B.Hu, F. Wu and Y.L. Wu, Phys.Rev. {\bf D75} 113003 (2007).

  18. SO(3) Gauge Model Exact Discrete symmetry  Tri-bimaximal with 13= 0 Experimental Data (99%) Gauge Symmetry has been well tested

  19. Why SO(3) Gauge Model?YLWarXiv:0708.0867, PRD 2008 • Why lepton sector is so different from quark sector ? Neutrinos are neutral fermions and can be Majorana! Majorana fermions only have real representations They possess orthogonal symmetry • Invariant Lagrangian for Yukawa Interactions

  20. Uniqueness of Lagrangian & New Particles • Symmetry

  21. SO(3) Expression of Tri-triplet Higgs Bosons In terms of SO(3) representation:

  22. Symmetry as Subgroup of SO(3) • Discrete symmetric group: • Cyclic permutation group: • Coset space : • Cyclic permuted form: with i+j-1 mod. 3

  23. Why Local SO(3) Symmetry • Fixing Gauge: • invariant Lagrangian • In terms of SO(3) Representation

  24. Vacuum Structure With the given fixing gauge:

  25. Type-II like (generalized) see-saw mechanism For neutrinos: For charged leptons:

  26. Global U(1) Family Symmetries • For Infinite Large Majorana neutrino masses • Majorana neutrinos decouple • Generating global U(1) family symmetries U(1)_1 x U(1)_2 x U(1)_3 • Large but Finite Majorana Neutrino Masses • ???

  27. Small Mass and Large Mixing of Neutrinos Approximate global U(1) family symmetries Smallness of neutrino masses and charged lepton mixing Neutrino mixings could be large !!!

  28. Nearly Tri-bimaximal neutrino mixings Neutrino and charged lepton mixings: ≈

  29. Lepton Mixing Matrix and Neutrino Masses CKM-like Lepton mixing: Neutrino Masses Heavy Majorana Masses

  30. Numerical Results 4 Parameters: / / Two inputs: Neutrino masses with given parameter

  31. Considering the hierarchy: One parameter in Vacuum: Interesting case: Two cases for charged lepton mixing:

  32. Numerical results for given parameter

  33. Taking Optimistic Predictions Which can be detected by the future neutrino Experiments, like Daya Bay

  34. Vector-Like Heavy Neutrino and Charged Lepton Masses Taking and It leads to and Taking The lightest vector-like charged lepton mass Which may be detected at LHC/ILC

  35. Summary • Smallness of neutrino masses and charged lepton mixing could be understood from approximate global U(1) family symmetries • Tri-bimaxiaml neutrino mixing is obtainable from the vacuum structure of SO(3) gauge symmetry • 13 is in general non-zero and testable at the experimental sensitivity • Some of the vector-like fermions could have masses at electroweak scale and be probed at LHC • The mechanism can simply be extended to quark sector for smallness of quark mixing

  36. THANKS

More Related