360 likes | 623 Views
奈米操控技術. 張所鋐 國立台灣大學機械工程系所教授 奈米 機電系統研究中心主任 shchang@ntu.edu.tw. 48 粒鐵原子在銅基板上形成的量子圍欄 (Quantum Corral of 48 Fe Atoms on Cu). 利用 STM 形成的步驟. 量子圍欄形成 7.3 nm 半徑圓環. IBM Almaden Research Center. 奈米科技的大事紀. 1959 美國 Prof. Richard Feynman 概念 1974 日本谷口教授使用 nanotechnology
E N D
奈米操控技術 張所鋐 國立台灣大學機械工程系所教授 奈米機電系統研究中心主任 shchang@ntu.edu.tw
48粒鐵原子在銅基板上形成的量子圍欄 (Quantum Corral of 48 Fe Atoms on Cu) 利用STM形成的步驟 量子圍欄形成7.3 nm 半徑圓環 IBM Almaden Research Center
奈米科技的大事紀 1959 美國Prof. Richard Feynman概念 1974 日本谷口教授使用nanotechnology 1981 IBM 發明掃瞄穿隧顯微鏡 (STM) 1991 日本飯島澄男發現奈米碳管 2000 美國柯林頓總統宣佈國家奈米計劃 2003 我國國家奈米科技計劃開始
由微機電、奈米機電演進至奈米技術 NEMS Nano-technology MEMS Molecular Electronics
材料科學 (材料表面結構分析) 記錄媒體業 (碟片記錄點檢測) 生物學 (生物檢體檢測) 高深寬比型微探針 10 nm 掃描探針顯微鏡(SPM) http://www.park.com/
V I ON 精密 電流計 It 微探針導電高剛性 電壓源 d 試片 壓電 平台 STM鎢針 掃瞄穿隧式顯微鏡 (STM) It V e (-Cd) It:穿隧電流 V:施加於探針和試片間的偏壓 C:材料常數 d:探針和試片間的間距 穿隧電流感測器示意圖
試片 原子力顯微鏡(AFM)
高深寬比型微探針 金字塔型微探針 10 nm AFM Cantilever-type 探針 • Tip Radius • Aspect Ratio • Stiffness • Cantilever • 電性 • 磁性
微機電多頭探針陣列 SEM放大圖,擁有陣列式32支DPN探針。左下角為針尖的放大圖。 探針材料為Si3N4,以LPCVD製成;尺寸400 um x 50 um,厚度600 nm。 SEM放大圖,擁有陣列式8支DPN探針。左下角為針尖的放大圖。針尖的曲度半徑是100 nm 探針材料為Si晶體;尺寸1400 um x 15 um,厚度10 um。 Nanotechnology 13 (2002) 212–217
掃描探針顯微鏡(Scanning Probe Microscope) 1982 Scanning Tunneling Microscopy (STM) --- G. Binnig, H. Rohrer et al, (1982) 1982 Near-Field Scanning Optical Microscopy (NSOM) --- D. W. Pohl (1982) 1986 Atomic Force Microscopy (AFM) --- G. Binnig, C. F. Quate, C. Gerber (1986) 1986 Scanning Thermal Microscopy (SThM) 1987 Magnetic Force Microscopy (MFM) 1987 Friction Force Microscopy (FFM or LFM) 1988 Electrostatic Force Microscopy (EFM) 1989 Scanning Capacitance Microscopy (SCM) 1991 Force Modulation Microscopy (FMM)
資訊儲存指標(Data storage Roadmap) Atom surface density Millipede Non magnetic storage IBM J. Res. Develop. 44(3), 3 May 2000
AFM操控: IBM Millipede資料儲存裝置 IBM已經製作出了32x32陣列的原型,92x92 um pitch at 3x3 mm chip ,儲存密度達400 Gb/inch2,預估將可達1 Tb/inch2,如郵票的面積即可儲存相當於25片DVD的容量。 1,024 AFM Tip Array Appl. Phys. Lett., 77, 2000, pp. 3299-3301.
IBM Millipede資料儲存裝置 不同儲存密度下,PMMA上的凹洞分佈 • 機構的作動方式是利用電阻加熱, 同時讓懸壁樑彎曲使AFM探針向PMMA方向移動以及加熱AFM探針。 • 全結構皆使用微/奈米機電製程製作,在矽基材上,植上所需的平面結構形狀,最後,再使用非等向性蝕刻技術,將平面結構從矽基材上釋放成為一懸壁樑結構。寫入時,需將探針加熱到500~700oC。 • 寫入凹洞後的PMMA,如左圖所示,圖中(a)的大小約為40 nm,間距為120 nm,PMMA厚度為70 nm,圖(b)的凹洞密度約為400 Gb/inch2,圖(c)為超高資料密度,其密度達到1 Tb/in2。 Appl. Phys. Lett., 77, 2000, pp. 3299-3301.
SEM輔助AFM奈米碳管鉗子操作 (CNT Nano-tweezers assembled in SEM, operated in AFM) 用於操作奈米鉗子的矽懸梁臂基座。 Ti/Pt薄層覆在針尖並連接於懸梁臂上的鋁線。利用聚焦離子束將Ti/Pt薄層分割成兩段,並分別連接兩條鋁線。 奈米碳管長2.5 um,初始空隙為780 nm (a),靜電力於4.5 V時空隙為零 (d)。 APL, 79 (11), 9/2001
AFM下的CNT奈米鉗子 (CNT Nano-tweezers) (a) 施加的電壓與奈米鉗子兩端距離的關係圖(列出三種不同直徑的碳管)。(b) 在電壓為4 V下,直徑為13.3 nm的奈米碳管的彎曲度。 開迴路表示其實驗的結果,點及實線表示其計算的結果。在計算中,碳管臂(有彈性、規律且連續)的長度為2.5 um,楊式係數為1 Tpa。碳管間的凡得瓦力估計值為2-18 J,比彎曲能量要小10倍之多。 APL, 79 (11), 9/2001
奈米操控系統 • UNC的奈米操控系統 • AFM • Graphics engine/interface • Phantom force stylus 資料來源:www.cs.unc.edu
奈米碳管的操控 雲母基底上多層奈米碳管(MWCNT)的操控。碳管長800 nm,直徑13 nm。碳管雖受到強大的應變,卻沒有斷裂。 單層的奈米碳管束(SWCNT),長800 nm,直徑15 nm。利用AFM針尖將其扳彎時,它顯現出比多層奈米碳管(MWCNT)小的剛性。 Microsc. Microanal. 4, 504–512, 1999
電子顯微鏡(SEM)輔助之奈米操控應用 這種原型機器可探測和操控,也可以處理一個被選定的奈米級物體,像奈米碳管(CNT) SEM平台上,裝設有兩組致動器移動平台,其一組含有X與Y軸移動台,另一組含有Z軸與Θ軸,於二組移動台上 AFM或穿遂式掃瞄顯微鏡(STM)探針,其中Z軸與Θ軸移動台中,又裝設有管狀壓電致動器(Piezo-Tube) Yu et al., Nanotech., 10, pp. 244-252, 1999
電子顯微鏡(SEM)輔助之AFM操控奈米碳管 圖 a 是從一束的奈米碳管抽出一支奈米碳管附著在AFM的針尖上的 SEM的圖 圖 b是有一束強硬的奈米碳管附著在AFM針尖上 圖 c是奈米碳管連接在上下兩個針尖之間 圖 d是一根奈米碳管連接在兩個AFM碳針的旁邊 多層奈米碳管藉由電弧加工成長在探針上,和利用空氣氧化純淨奈米碳管,另外單層奈米碳管則是利用其他方法,多層奈米碳管的直徑為2~50 nm,而其長為10 μm Yu et al., Nanotech., 10, pp. 244-252, 1999
奈米碳管的共振 • 奈米碳管在各種共振模態時的共振情形 • 振動頻率和奈米碳管的直徑(D)、長度(L)、密度(ρ)、彎曲模數 (Eb) 有關 J. of Phys. and Chem. of Solids, 61(2000), 1025-1030
SEM觀察奈米天平及電場放電發光現象 此為世界上最微小的天平,此種技術可以應用在測量大的生物和生醫分子,如病毒等。 量測振動頻率,可以知道掛在奈米碳管末端的粒子質量,可量測質量可以到 22+6 fg (1 f=10-15) 。 • 奈米碳管的獨一無二結構特性顯示出在電場中,能產生高密度放電電流 • 奈米碳管在電場放電(field emission),會有發光的現象,如圖中下方位置所示 • 圖中施加電壓為60 V,放出電流約20 μA
TEM輔助之奈米操控裝置 右端為自由端 右側由壓電致動器移動水銀液滴裝置,使其與奈米碳管的自由端接觸 左端利用鐵弗龍夾具來固定
Seemingly frictionless Nano-sized CNT bearings • the bearing shown in the left figure is about ten thousand times smaller than the diameter of a human hair. • Van der Waals forces permit sheets of carbon to slide past one another. • Graphite makes an excellent lubricant, and a nanotube bearing could provide frictionless rotation without wear. illustration of a telescoping nanotube acting as a low-friction bearing
Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes Experiments performed inside the 100KV TEM using nano-manipulator. (A to C) The process of opening the end of a MWNT (A), exposing the core tubes (B), and attaching the nanomanipulator to the core tubes (C). (D and E) Two different classes of subsequent experiments performed. In (D), the nanotube is repeatedly telescoped while observations for wear are performed. In (E), the core is released and pulled into the outer-shell housing by the attractive van der Waals force. A TEM image of a peeling and shaped (2.9 V and 200 micro-amp) telescoped nanotube. This particular nanotube originally had nine shells, but upon telescoping a four-shell core has been nearly completely extracted.
Low-Friction Nanoscale CNT Linear Bearing Use of nano-manipulator in TEM In the first five frames, the core nanotubes are slowly withdrawn to the right. In the sixth image, which occurred one video frame after the core was released, the core has fully retracted into the outer nanotube housing as a result of the attractive van der Waals force.
Low-Friction Nanoscale Multiwall Carbon Nanotubes Linear Bearing TEM images of a bamboo section of a MWNT. (A) An as-grown bamboo section. (B) The same area after the core tubes on the right have been telescoped outward. Bamboo sections are independent and are free to slide inside their nanotube housing. Static friction force: 2.3 x 10E-14 N per atom (6.6 x 10E-15 N/A2) Dynamic friction force: 1.5 x 10E-14 N per atom (4.3 x 10E-15 N/A2) : near perfect surface Conventional measured friction force is three order magnitude greater.
TEM輔助Nanoindentation test Image of indenter tip and electron transparent region of a FIB-prepared sample. In situ nanoindentation holder for JEOL 200CX in situ microscope.
Nature, 395, pp.781, 1998 TEM images of contacting STM tip A gold bridge formed between the gold tip (top) and gold substrate (bottom).
Quantized conductance of gold atom contact Nature, 395, pp.781, 1998
The Magic of Small and Smaller: Nanotechnology Nobel laureate Lecture Heinrich Rohrer, Switzerland Challenges: novel nano components functional components connect nano to maco to macro, build connection network grow components at contacts at connectors molecular recognition for contacting explore interface functionality, self assembly material process beyond Si Do Nano Science & Technology in Nature’s Way
Superlattices: New Physics and Electronics Nobel Laureate Leo Esaki ( Tokyo, Japan ) 1973 Nobel Prize in Physics- tunneling in solids (a total of 3 person) Esaki diode, super lattice suggestion to become a Nobel winner: 1. do not allow yourself to be trapped by your experiences 2. do not allow yourself to become overly attached to any authority in your field 3. do not hold on to what you don’t need 4. do not avoid confrontation 5. do not forget your spirit of childhood
謝謝! 敬請指教! Richard Feynman於1959年12月發表:『在原子級的世界中,我們將發現全新的力、全新的可能性、以及全新的效應。物質在加工與製造上所遇到的問題將與之前大相逕庭。』