1 / 26

High Data Rate Transmission System for Micro UAVs

LEP> SCN. High Data Rate Transmission System for Micro UAVs. Fabien MULOT: Internship ONERA-SUPAERO Vincent CALMETTES: Research SUPAERO. LEP> SCN. Plan of the presentation. Context of the study Video quality VS data rate trade-off

baby
Download Presentation

High Data Rate Transmission System for Micro UAVs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LEP> SCN High Data Rate Transmission System for Micro UAVs Fabien MULOT: Internship ONERA-SUPAERO Vincent CALMETTES: Research SUPAERO

  2. LEP> SCN Plan of the presentation • Context of the study • Video quality VS data rate trade-off • Characterisation of the micro-UAV transmission channel • Fade mitigation techniques • Future studies and developments

  3. LEP> SCN b a c a. Reflection b. Shadowing c. Line of Sight Context of the study • Study of a high data rate transmission from a video payload onboard a micro-UAV. Monitoring Base station

  4. LEP> SCN Context of the study • Transmission Band • ISM band 2400 - 2483,5 MHz • Regulation http://www.anfr.fr ("Tableau National de Répartition des Bandes de Fréquences“)

  5. LEP> SCN Context of the study • Objectives of the study • High data rate source • 640x480 pixels grey scale Camera, 8 bits JPEG coded Image • 1Mbits/s target • 10-7 BER • Semi urban environment, 1Km max from the emitter to the receiver • 0 - 50 Km/h speed • QPSK modulation • Shadowing and multipath resistant transmission

  6. LEP> SCN Channel Video monitoring Reception Scheme Video Source Transmission Scheme Video quality VS data rate trade-off

  7. LEP> SCN D Video quality VS data rate trade-off 302 Ko 10 Ko A • 2 modes of transmission • 14 i/s low quality A • 3.3 i/s high quality D • Bit rate: 1.12 Mbits.s-1 42 Ko

  8. LEP> SCN 1.12 Mbits.s-1 Channel ? Video monitoring Reception Scheme Transmission Scheme JPEG Coding Characterisation of the micro-UAV transmission channel

  9. LEP> SCN Micro-UAV transmission channel • Path loss • A = (1/d)N N = [3 ….5] • What is shadowing? • Particular clutter (buildings dense woods) • Scale of 100m • 5 to 20dB • What is multipath fading? • Reflections, scattering on rough surfaces • Constructive and destructive interference • Scale of 6.25cm at 2.4Ghz • 5 to 40 dB

  10. LEP> SCN X(t) 1 2 n 1(t) 2(t) n(t)     Y(t) Micro-UAV transmission channel • Statistic model • C) channel Model • A) Statistic Power Delay Profiles • B) Tap Delay Line Model

  11. LEP> SCN Deep Fades Example of a 4 MHz occupied bandwidth for video transmission Micro-UAV transmission channel • Channel Characterisation • Use of UMTS standard power delay profiles • Coherence bandwidth Bc: • 6KHz<Bc<67KHz depending on the profiles • Frequency selective channel • Channel impulse response: 5µs 25 kHz Coherence Bandwidth

  12. LEP> SCN 1.12 Mbits.s-1 Multipath Shadowing Frequency Selecticve Suited Reception Scheme Channel Decoding JPEG Decoding Channel Coding JPEG Coding Modulation Micro-UAV transmission channel • Issues: • Frequency selective channel • Inter Symbol Interferences • Solutions: • Channel coding • Suited transmission techniques

  13. LEP> SCN 1.12 Mbits.s-1 Multipath Shadowing Frequency Selctive Suited Reception Scheme Channel Decoding JPEG Decoding Channel Coding JPEG Coding Modulation Fade Mitigation Techniques Channel coding

  14. LEP> SCN Puncturing Reed Solomon (204/188) External Interleaver Convvolutional Code [177/188] Internal Interleaver Channel Coding • Objective: Spreading and correction of the bursts of errors • Architecture • Target BER: 10-7 => SNR=3.5 dB • Pe=Pr.D4/(Ge.Gr)

  15. LEP> SCN 1.12 Mbits.s-1 2. Mbits.s-1 Multipath Shadowing Frequency Selective Suited Reception Scheme Channel Decoding Channel Coding JPEG Decoding JPEG Coding Modulation Fade Mitigation Techniques Transmission & Reception Techniques

  16. LEP> SCN Training sequence generator QPSK Mapping JPEG source coding SRRC Filtering Coding +Puncturing Channel SRRC Filtering JPEG decoding Decoding + deinterleaving Demapping Adaptive filtering QPSK + Equalization • Architecture • Channel coding • SSRC Roll Off = 0.4 • Equalizer • Bandwidth: 1.5 Mhz

  17. LEP> SCN Multipath Shadowing 1.12 Mbits.s-1 2. Mbits.s-1 0.8 Msymb.s-1 MLSE 1024 states Channel Coding Channel Decoding JPEG Decoding JPEG Coding QPSK QPSK 1.5 Mhz QPSK + Equalization • Equalization • LMS algorithm • Channel impulse response <= 1symbol • MLSE using a Viterbi algorithm • Several Symbols • Mk Complexity • 1024 state trellis

  18. LEP> SCN Guard Interval Insertion 2N points padding P/S CP S1(k)..Sn(k) Channel I F F T Coding Symbol mapping S/P OFDM emitter Frequency 0 0 OFDM • Advantage: • Transmission of high data rate while keeping a non frequency selective channel. • Bandwidth efficient • Architecture • Channel coding mandatory • OFDM Symbol duration =50 µs • 10 times the channel impulse response

  19. LEP> SCN 0.8 Msymb.s-1 1.12 Mbits.s-1 2. Mbits.s-1 20 Ksymb Multipath Shadowing OFDM 64 pts FFT Channel Coding OFDM 64pts IFFT Channel Decoding JPEG Decoding JPEG Coding QPSK QPSK 1.3 Mhz OFDM • Taking into account • The symbol duration 50µs • the length of the cyclic prefix • The data rate after coding • The insertion of training symbols for equalization • 64 points FFT • Bandwidth: 1.3Mhz

  20. LEP> SCN Power Noise Spread signal Frequency Narrow Band Information signal After Despreading Power Spread Noise Frequency Up sampling QPSK Mapping SRRC Filtering Coding IQ Spreading code IQ Scrambling code DSSS + Rake • Advantages of Direct Sequence Spread Spectrum: • Rake uses time diversity • Resistant to noise and interference • Architecture • OVSF spreading codes • PN scrambling sequence • Rake receiver

  21. LEP> SCN Descramble Despread Integrate and Dump Channel estimation Path Search g*(t-1) y(t-1) 1 ∫dt g*(t-2) y(t-2) 2 ∫dt IQ demapper y(t)  g*(t-3) y(t-3) 3 ∫dt g*(t-4) y(t-4) 4 ∫dt MRC DSSS + Rake • Rake Receiver Architecture

  22. LEP> SCN 51.2 Msymb.s-1 0.8 Msymb.s-1 1.12 Mbits.s-1 2. Mbits.s-1 Multipath Shadowing Channel Coding Channel Decoding JPEG Coding JPEG Decoding QPSK DSSS QPSK Rake 72.6 Mhz DSSS + Rake

  23. LEP> SCN Future studies and developments

  24. LEP> SCN LEP> SCN ATHEROS AR5005uX USB 2.0 Interface Baseband Processor Transceiver FPGA Baseband Processor Transceiver External PA ATHEROS 5523 ATHEROS 5112 ATHEROS 5523 ATHEROS 5112 Future studies and developments • Evaluation of a system based on existing commercial technologies: • WI-FI [802.11b] • DSSS • 1 to 11 Mbps • WI-FI [802.11g] • OFDM • 1 to 54 Mbps ? FEC ?

  25. LEP> SCN LEP> SCN Thank you Questions ?

  26. Analog VS Digital • Digital Camera • JPEG processing to deduce the bandwidth • Onboard storage of the data is possible • Digital signals are more resistant against multipath distortions • I.e Use of COFDM • Already existing technologies working in the ISM band • Dynamically reconfigurable system parameters • No need to adjust to tune the transmitter board • Analog transmission requires more power

More Related