1 / 45

Asymmetric Orbifold toward Heterotic Anomalous U(1) GUT

Asymmetric Orbifold toward Heterotic Anomalous U(1) GUT. Toshifumi Yamashita (Nagoya University). 09 Nov. 2009 @KEK mini workshop. working with Nagoya U. : Maekawa, Moriyama, Teraguchi Takei, Ito, Kuwakino NCTU (Taiwan) : Keijiro Takahashi.

baka
Download Presentation

Asymmetric Orbifold toward Heterotic Anomalous U(1) GUT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Asymmetric OrbifoldtowardHeterotic Anomalous U(1) GUT Toshifumi Yamashita (Nagoya University) 09 Nov. 2009@KEK mini workshop working with Nagoya U. : Maekawa, Moriyama, Teraguchi Takei, Ito, Kuwakino NCTU (Taiwan) :Keijiro Takahashi

  2. Introduction • anomalous U(1) GUT N. Maekawa&T.Y. & ・・・ (’01-’04) • an interesting SUSY-GUT e.g. E6*SU(2)H DTS, PD, Yukawa hierarchy, SUSY flavor etc. • anomaly : assumed to be cancelled by GS. to be checked We aim to embed it into string. Asymmetric orbifold • GUTs from the Heterotic string. • examined in '80 exhaustively simple cpt. no adjoint Higgs Kac-Moody level

  3. Plan • Introduction • anomalous U(1) GUT • overview • Narain cpt. & Modular inv. & orbifold • Models • Summary

  4. : non-Abelian Grand Unified Theories • Unification of Gauge Group Charge Quantization • Unification of Matter SU(5) SO(10) E6 + + = + + = wrong GUT relation

  5. Grand Unified Theories • sector in E6 model • E-twisting M.Bando and T.Kugo mass massless : • mildhierarchy in sector !! • all come from and . large mixing

  6. : non-Abelian Grand Unified Theories • Unification of Gauge Group Charge Quantization • How about Higgs ? Proton decay Doublet-Triplet (DT) Splitting Problem

  7. SUSY, (FCNC)? SUSY-GUT hierarchal Yukawa? • unifications of forces and of matter • charge quantization • stabilization of the weak scale • gauge coupling unification (GCU) • fascinating extension of SM Higgs? Proton decay?

  8. : FN field : cutoff scale Anomalous U(1) gauge symmetry • Low energy theory of string theory • Anomaly Green-Schwartz mechanism • Froggatt-Nielsen (FN) mechanism ex)

  9. does not appear in . This strongly constrain !! Anomalous U(1) gauge symmetry • Low energy theory of string theory • Anomaly Green-Schwartz mechanism • Froggatt-Nielsen (FN) mechanism • SUSY-zero (holomorphic-zero) mechanism superpotential : holomorphic Only positively charged operators can appear.

  10. Anomalous U(1) gauge symmetry • Low energy theory of string theory • Anomaly Green-Schwartz mechanism • Froggatt-Nielsen (FN) mechanism • SUSY-zero (holomorphic-zero) mechanism Adjoints of SO(10) : Ex) Only the linear terms in A’ are relevant for EOM.

  11. Anomalous U(1) gauge symmetry • Low energy theory of string theory • Anomaly Green-Schwartz mechanism • Froggatt-Nielsen (FN) mechanism • SUSY-zero (holomorphic-zero) mechanism Adjoints of SO(10) : Ex) The # of non-zero xi labels the vacuum N=3 : Dimopoulos-Wilczek VEV DTS

  12. Anomalous U(1) GUT N.Maekawa & T.Y. & … SUSY-GUT w/ anomalous U(1) symmetry • Ansatz • “generic” interaction introduce allpossible interactions (including NROs) assume all the coefficients are O(1) • vacuum (cutoff scale) : GUT singlet operator, : U(1)A charge : breaking scale of U(1)A charge assignment = def. of model

  13. Anomalous U(1) GUT N.Maekawa & T.Y. & … • Generic interaction • FN mechanism • SUSY-zero mechanism • Natural Gauge Coupling Unification hierarchal Fermion Yukawa DW type of adjoint VEV DT Splitting proton decay GCU

  14. horizontal symm. SUSY, (FCNC)? Anomalous U(1) GUT N.Maekawa & T.Y. & … hierarchal Yukawa? • fascinating extension of SM • unifications of forces and of matter • charge quantization • stabilization of the weak scale • gauge coupling unification (GCU) Higgs? Proton decay? Almost all the problem can be solved!!

  15. Anomalous U(1) GUT N.Maekawa & T.Y. & … • examples of E6 model PTP 107, 1201 (2002) N.Maekawa and T.Y. E6 * Z2 PLB561, 273(2003) N.Maekawa two charged adjoint 6 – 3 or 5 – 2 generations E6 * SU(2)

  16. Plan • Introduction • anomalous U(1) GUT • overview • Narain cpt. & Modular inv. & orbifold • Models • Summary

  17. asymmetric orbifold overview anomalous U(1) GUT -- E6 model charged adjoint Higgs higher Kac-Moody level Het, M, F, … related to doubled geometry? diagonal embedding -- Narain cpt. • asymmetric treatment of left- and right-moving string need careful consistency check

  18. : structure constant w/ overview • Kac-Moody algebra ex) mode exp. of world sheet current • Diagonal embedding

  19. Only one model is possible. overview • # of generation e.g. J.Erler (1996) (in known models) Z.Kakushadze &H.Tye (1996) • model cpt. of or SO(32) Hetero w/ Wilson line Z.Kakushadze &H.Tye (1996) claimed w/ adjoint Higgs, 3 generations & non-Abelian Hidden gauge Narain compactification (flat instead of CY, for simplicity)

  20. Plan • Introduction • anomalous U(1) GUT • overview • Narain cpt. & Modular inv. & orbifold • Models • Summary

  21. Narain cpt. & Modular inv. & orbifold • string w/ compactification

  22. 4D 6D 16D on or Spin(32)/Z2 Lie lattice left right Narain cpt. & Modular inv. & orbifold • Heterotic string from modular inv. "compactified" here? no geometrical interpretation • Narain compactification discard geometric interpretation also in cpt. 6D gauge symm w/ rank 22 is possible : ex)

  23. red blue shift Narain cpt. & Modular inv. & orbifold • Modular invariance The modular transformations, closed string 1-loop amp. do not change the torus. The amplitude should be invariant under these tr..

  24. Narain cpt. & Modular inv. & orbifold • partition function : NS : R

  25. (or ) Narain cpt. & Modular inv. & orbifold • partition function even T S self-dual

  26. Narain cpt. & Modular inv. & orbifold • geometric compactification ex.) A2 lattice winding momentum This momentum lattice is actually even & self-dual. proof

  27. Narain cpt. & Modular inv. & orbifold • Narain lattice Cf.) geometric : simple roots of a (simply laced) Lie group. winding momentum • R=1 21/2 ( ; 0) • R= 2-1/2 for pR=0 : Cartan matrix This lattice leads to gauge symmetry. This does not, except for SU(2).

  28. Narain cpt. & Modular inv. & orbifold • ESDL generating technique left right

  29. Narain cpt. & Modular inv. & orbifold • ESDL generating technique more left right left right

  30. Narain cpt. & Modular inv. & orbifold ZNfor simplicity • orbifold diagonal embedding 4D N=1 SUSY Manifold / discrete symm. impose identity under (discrete) orbifold action twist (rotation) shift (reflection) : Z2,3,6 ex.) A2 lattice 1/3twist : does not change the lattice

  31. Narain cpt. & Modular inv. & orbifold ZNfor simplicity • orbifold diagonal embedding 4D N=1 SUSY Manifold / discrete symm. impose identity under (discrete) orbifold action twist (rotation) shift (reflection) : Z2,3,6 ex.) A2 lattice additional string states : does not change the lattice

  32. S S T Narain cpt. & Modular inv. & orbifold • partition function additional string state w/ different B.C. • Modular tr. S2=1

  33. T : S : Narain cpt. & Modular inv. & orbifold • partition function ex) Z3 S • Modular tr. S S2=1 T

  34. T : S : Rules on are established for symm. orbifold. Narain cpt. & Modular inv. & orbifold • partition function ex) Z3 • Modular inv. P.F. is inv. if each sector satisfies the tr. property. Z.Kakushadze &H.Tye (1996) For asymm. orbifold, not yet.

  35. T : S : Narain cpt. & Modular inv. & orbifold • partition function ex) Z3 • Modular inv. We make and then define by S, T.

  36. T : S : Narain cpt. & Modular inv. & orbifold • partition function ex) Z3 • Modular inv. The remaining S, T give non-trivial conditions.

  37. Plan • Introduction • anomalous U(1) GUT • overview • Narain cpt. & Modular inv. & orbifold • Models • Summary

  38. 4D N=1 SUSY even Models • 4D SUSY 4D left right zero modes SO(8)LC repr. phase

  39. Models • diagonal embedding : Z3 4D E6 E6 E6 combined with phaseless RM to form gauge field. left right level 3 E6

  40. 4D N=1 SUSY Models • lattice for right-mover 4D left right : Z3 E6 A2 A2 A2 D4 A2

  41. Models • possible models 4D Z.Kakushadze &H.Tye (1996) A2 A2 E6 E6 E6 left E6 right 1 neutral adj. 5 – 2 generations Z6 A2 A2 E6 E6 E6 A2 A2 A2 Z6 : vector-like Z3 : 9 generations D4 E6 E6 E6 D4 A2

  42. Summary • We are working on Heterotic GUTs to derive Anomalous U(1) GUT from string. • to get 4D N=1 SUSY E6 model w/ adjoint Higgs & 3 generations E63 lattice via Narain compactification diagonal embedding in asymmetric orbifold • Future works We want two charged Adjoint Higgs towards Anomalous U(1) GUT

  43. Back-up Slides

  44. Narain cpt. & Modular inv. & orbifold • ESDL generating technique (248) (78,1)+(1,8)+[(27,3)+c.c.] (78;1)+(1;78)+[(27;27)+c.c.] left (78;1,1,1)+(1;8,1,1)+[(1;3,3,3)+c.c.] +[(27;3,3,1)+c.c.] right (78,1,1;1)+(1,1,1;8)+[(1,27,27;3)+c.c.] +[(27,27,27;1)+(27,1,27;3)+(27,27,1;3) +(27,27,27;1)+(27,1,27;3)+(27,27,1;3)] left right

  45. Narain cpt. & Modular inv. & orbifold • ESDL generating technique (248) (78,1)+(1,8)+[(27,3)+c.c.] (78;1)+(1;78)+[(27;27)+c.c.] left (78;1,1,1)+(1;8,1,1)+[(1;3,3,3)+c.c.] +[(27;3,3,1)+c.c.] right (78,1,1;1)+(1,1,1;8)+[(1,27,27;3)+c.c.] +[(27,27,27;1)+(27,1,27;3)+(27,27,1;3) +(27,27,27;1)+(27,1,27;3)+(27,27,1;3)] left right

More Related