160 likes | 265 Views
Outline: The ‘Carbon-based’ NPP Approach Global Results Focus: Subtropical Gyre Patterns Field Comparison Productivity Issues Closing. PHYTOPLANKTON GROWTH RATES AND CARBON BIOMASS FROM SPACE. Michael Behrenfeld, Emmanuel Boss, David Siegel, & Don Shea.
E N D
Outline: The ‘Carbon-based’ NPP Approach Global Results Focus: Subtropical Gyre Patterns Field Comparison Productivity Issues Closing PHYTOPLANKTON GROWTH RATES AND CARBON BIOMASS FROM SPACE Michael Behrenfeld, Emmanuel Boss, David Siegel, & Don Shea References: Behrenfeld, Boss, Siegel, Shea 2005. Global Biogeochem. Cycles, 19, 10.1029/2004GB002299 Winn, Campbell, Christian, Letelier, Hebel, Dore, Fujieki, Karl. 1995. Global Biogeochem. Cycles 9:605-620. Behrenfeld, Boss. 2003. Deep Sea Research. 50:1537-1549. Behrenfeld, Prasil, Babin, Bruyant. 2004. J. Phycology. 40:4-25. Garver, Siegel. 1997. J. Geophys. Res. 102: 18,607-18,625. NASA Ocean Biology and Biogeochemistry Program
Carbon Approach: Scattering coefficients covary with particle abundance Scattering coefficients covary with phytoplankton carbon Chlorophyll variations independent of C are an index of changing cellular pigmentation Chl:C can then be used as an index of the rate term Particulate beam attenuation and particle backscattering coefficients reflect changes in particle load Remote sensing ‘inversion’ products: bbp, aph (cDOM) thus a path to carbon biomass & growth rate from space References: Garver, Siegel. 1997. J. Geophys. Res. 102: 18,607-18,625. [Chlorophyll] = f [biomass, light, nutrients,…]
Chl:C physiology 3 primary factors Light Temperature Nutrients Chl:Cmax Dunaliella tertiolecta 20 oC Replete nutrients Exponential growth phase Geider (1987) New Phytol. 106: 1-34 16 species = Diatoms = all other species Laws & Bannister (1980) Limnol. Oceanogr. 25: 457-473 Thalassiosira fluviatilis = NO3 limited cultures = NH4 limited cultures = PO4 limited cultures Chl:C (mg mg-1) Chl:Cmin Light (moles m-2 h-1) Laboratory Chl:Cmax Temperature (oC) Chl:Cmin Low Nutrient stress High Growth rate (div. d-1)
90o 90o 75o 75o 60o 60o 45o 45o L0 NP NA 30o 30o NA L1 NP 15o 15o Chlorophyll Variance Level 28 Regional Bins L2 NI CP CA 0o 0o L3 SI 15o 15o SA L4 SP 30o 30o SP SA SO-all 45o 45o 60o 60o SO 75o 75o excluded 90o 90o References: Behrenfeld, Boss, Siegel, Shea 2005. Global Biogeochem. Cycles, 19, 10.1029/2004GB002299
Low Nutrient stress High Low Nutrient stress High {median r2 = 0.85} Chl:C (mg mg-1) Chl:C (mg mg-1) Light (moles photons m-2 h-1) Laboratory Space Chl:Cmax Chl:Cmax References: Behrenfeld, Boss, Siegel, Shea 2005. Global Biogeochem. Cycles, 19, 10.1029/2004GB002299 Temperature (oC) Chl:Cmin Chl:Cmin Growth rate (div. d-1) Temperature (oC)
Boreal Summer Boreal Winter Relative frequency Chl:Csat ( Chl:CN,T-max ) Light 0 0.5 1.0 1.5 2.0 Growth rate (division d-1) Growth rate () = maxf (nuts, temp) g (light) 2 divisions d-1 Banse (1991) 1 – exp -3light References: Behrenfeld, Boss, Siegel, Shea 2005. Global Biogeochem. Cycles, 19, 10.1029/2004GB002299
Chlorophyll Scaled Carbon Chl:C (right axis) 1998 1999 2000 2001 2002 Year Oligotrophic Oceans North Atlantic South Atlantic North Pacific South Pacific
North Pacific: HOT References: Winn, Campbell, Christian, Letelier, Hebel, Dore, Fujieki, Karl. 1995. Global Biogeochem. Cycles 9:605-620. 1998 1999 2000 2001 2002 Year
North Pacific & North Atlantic: 14C HOT Measured Pbopt Measured cp:Chl ratio BATS Sequential Observation References: Behrenfeld, Boss. 2003. Deep Sea Research. 50:1537-1549.
1500 Boreal Summer Boreal Winter 1200 800 Net Primary Production (mg m-2) Carbon-based 400 0 Chlorophyll-based Primary Production …NPP = f [Carbon, Zeu, , g (I0)]… References: Behrenfeld, Boss, Siegel, Shea 2005. Global Biogeochem. Cycles, 19, 10.1029/2004GB002299
1998 1999 2000 2001 2002 Year North Atlantic South Atlantic Net Primary Production (Pg C month-1) = Carbon-based estimate = Chlorophyll-based estimate (VGPM) North Pacific South Pacific
North Pacific: HOT References: Winn, Campbell, Christian, Letelier, Hebel, Dore, Fujieki, Karl. 1995. Global Biogeochem. Cycles 9:605-620.
DIRECTIONS f (N,T): linear, zero intercept ‘Ek-independent’ variability** PIC (e.g., coccoliths)cDOM vs pigment absorption (10 Pg y-1) Particle size distributions Species-dependent physiology New Remote Sensing…. ** References: Behrenfeld, Prasil, Babin, Bruyant. 2004. J. Phycology. 40:4-25.
Growth Rates, Carbon Biomass, & Ecosystem Models THURSDAY (SS26; 4:30 pm) Patrick Schultz et al. Investigating the balance between phytoplankton growth and loss from space (SS25; 6:45 pm) Andy Jacobson et al. An inductive ocean ecology model based on satellite observations of phytoplankton carbon biomass.
90o 90o 75o 75o 60o 60o 45o 45o L0 NP NA 30o 30o NA L1 NP 15o 15o Chlorophyll Variance Level 28 Regional Bins L2 NI CP CA 0o 0o L3 SI 15o 15o SA L4 SP 30o 30o SP SA SO-all 45o 45o 60o 60o SO 75o 75o excluded 90o 90o C = scalar (bbp – intercept) = 13,000 (bbp – 0.00035) Intercept = 0.00017 m-1 Stramski & Kiefer (1991) Prog. Oceanogr. 28,343-383 Cho & Azam (1990) Mar. Ecol. Prog. Ser., 63,253-259 Phytoplankton Carbon = 25 – 35% POC Eppley et al. (1992) J. Geophys. Res., 97, 655-661 DuRand et al. (2001) Deep-Sea Res. II, 48, 1983-2003 Gundersen et al. (2001) Deep-Sea Res. II 48, 1697-1718 ‘biomass domain’ bbp (m-1) Intercept = bbp from stable component of the bacterial population ‘physiology domain’ Chlorophyll (mg m-3)