1 / 60

Number systems and Logic Gates 14 Marks

Number systems and Logic Gates 14 Marks. 2. Electronic Spreadsheet (Excel) 13 Marks. 3. Database 14 Marks. 4. Flow charts & Pseudocode 12 Marks Total - 53. Important Areas. Data and information HTML Codes ICT and Society

balin
Download Presentation

Number systems and Logic Gates 14 Marks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Number systems and Logic Gates 14 Marks 2. Electronic Spreadsheet (Excel) 13 Marks 3. Database 14 Marks 4. Flow charts & Pseudocode 12 Marks Total - 53

  2. Important Areas Data and information HTML Codes ICT and Society Usage of Internet for daily works Information systems

  3. ixLHd moaO;s 1 oyfha mdofha ixLHd moaO;sh 2 fofla mdofha ixLHd moaO;sh 3 wfÜ mdofha ixLHd moaO;sh 4 odifha mdofha ixLHd moaO;sh

  4. oyfha mdofha ixLHd moaO;sh ixLHdxl - 10 ^0 1 2 3 4 5 6 7 8 9& Wmßu w.h - 9

  5. oyfha mdofha ixLHd moaO;sh wm mka;sfha <uqka 36 la isà 3610 3 6 101 100 10 1 10*3 1*6 30 + 6 = 36

  6. fofla mdofha ixLHd moaO;sh ixLHdxl - 2 ^0 1 & Wmßu w.h - 1

  7. oyfhamdofhkafoflamdohgyerùu ixLHdj 2 ka fnoñka b;sßh .kak 2 36 2 18 - 0 2 9 - 0 2 1001002 4 - 1 2 – 0 2 1 – 0

  8. 3610 foflamdohgyerùu 0 1 0 0 1 0 0 64 32 16 8 4 2 1 26 25 24 23 22 21 20

  9. fofla mdofhka oyfha mdohg yerùu 2 n, f,i ,shd tl;=j .kak 1001002 1 0 0 1 0 02 24 20 25 23 22 21 1 16 32 8 4 2 32+ 0 +0 + 4 + 0 + 0 = 36

  10. wfÜ mdofha ixLHd moaO;sh ixLHdxl - 8 ^0 1 2 3 4 5 6 7 & Wmßu w.h - 7

  11. oyfha mdofhka wfÜ mdohg yerùu ixLHdj 8 ka fnoñka b;sßh .kak 8 295 8 36 - 7 4 - 4 4478

  12. wfÜ mdofhka oyfha mdohg yerùu 8 n, f,i ,shd tl;=j .kak 4358 4 3 5 8 80 82 81 1 64 8 256 + 24 + 5 = 285

  13. wfÜ mdofhka fofla mdohg 8= 23 1 – 001 2 - 010 3 - 011 4 - 100 5 – 101 6 - 110 7 - 111 8 - 100

  14. wfÜ mdofhka fofla mdohg yerùu iEu ixLhdxlhlau fofla mdofha ixLHdxl 3 ka 3 olajkak 3578 3 5 7 011 101 111 3578 = 0111011112

  15. fofla mdofhka wfÜ mdohg yerùu mdofha ixLHdxl 3 ka 3 LdKav lr 8 mdohg w.h olajkak 1011110112 1 0 1 1 1 1 0 1 1 2 7 5 3 5738

  16. odifha mdofha ixLHd moaO;sh ixLHdxl - 16 ^0 1 2 3 4 5 6 7 8 9 A B C D E F & Wmßu w.h - 15 (F)

  17. oyfha mdofhka oyifha mdohg yerùu ixLHdj 16 ka fnoñka b;sßh .kak 16 92 5 - 12 (C) 5C

  18. odifha mdofhka oyfha mdohg yerùu 16 n, f,i ,shd tl;=j .kak 5E16 5 E16 160 161 1 16 (16*5)+(1*14) = 94

  19. odifha mdofhka fofla mdohg yerùu iEu ixLHdxlhlau fofla mdofha ixLHdxl 4 ka 4 olajkak 3 B16 3 11 0011 1011 3B16 = 001110112

  20. fofla mdofhka odifha mdohg yerùu fofla mdofha ixLHdxl 4 ka 4 LdKav lr 16 mdohg w.h olajkak 011110112 0 1 1 1 1 0 1 1 2 7 11 (B) 7B16

  21. odifha mdofhka wfÜ mdohg yerùu odifha mdofhka fofla mdohg yrjd miqj 3ka 3 LdKav lrkak 7B16 0 1 1 1 1 0 1 1 2 0 1 1 1 1 0 1 1 2 1 7 3 1738

  22. wfÜ mdofhka odifha mdohg yerùu fofla mdohg yrjd miqj 4ka 4 LdKav lr w.hka ,nd .kak 5768 101 111 110 2 1 0 1 1 1 1 1 1 0 2 1 7 14 (E) 17E16

  23. Logic Gates 4. NAND 1. AND 5. NOR 2. OR 6. XOR 3. NOT 7. XNOR

  24. AND ;¾lh ixfla; yd m%ldYkweiqßkayÿkd .ksuq 1 0 A= 1 F = 0 1 0 B= A B • Boolean m%ldYkhlaf,i U A BF 0 0 0 wdodk 2lu i;HjQúgmuKla m%;sodkhi;Hfõ 0 1 0 1 0 0 1 1 1

  25. OR ;¾lh ixfla; yd m%ldYkweiqßkay÷kd .ksuq 1 0 A= 1 F = 0 1 0 B= A B + • Boolean m%ldYkhlaf,i U A BF 0 0 0 wdodk 1la fydai;HjQúg m%;sodkhi;Hfõ 0 1 1 1 0 1 1 1 1

  26. NOT ;¾lh ixfla; yd m%ldYkweiqßkay÷kd .ksuq A A 1 1 0 0 A • Boolean m%ldYkhlaf,i

  27. Logic Gates we;af;afldfyao 4805 8 7 1 6

  28. Gates wdOdrfhkamßm: yd Booleanm%ldYkiu. fudfyd;la 1. my; mrsm: ioydBoolean m%ldYk ,shkak A A ? ? B A ? B

  29. A A B B ? F=A’.B+C’ C C A’ C’ F=A’.B+C’ A’.B 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

  30. A B ? C A B ? C D

  31. A B F C Fi|ydnQ,shdkqm%ldYkhla ,shkak m%;sodkh 1 ,nd .ekSugwdodkhflfiajshhq;=o@

  32. B.C (A+B) Back 3. (A+B) . B.C ms<s;=r A B C .

  33. X.X = X X.0 = 0 X.X’ = 0 X+X’ = 1 X.1 = X X+1 = 1

  34. EXCEL

  35. Formula =C2*D2 Function =sum(E2:E6) Average, Max, Min, Round, Count, CountA

  36. Formula =A$1*B1 C1 iuSlrKh= A$1*B1 C2 iuSlrKh= A$1*B2 C3 iuSlrKh= A$1*B3 C4 iuSlrKh= A$1*B4 C5 iuSlrKh= A$1*B5 C1 iuSlrKh= A1*B1 C2 iuSlrKh= A2*B2 C3 iuSlrKh= A3*B3 C4 iuSlrKh= A4*B4 C5 iuSlrKh= A5*B5

  37. DATABASE

  38. Payments Personal Foreign Key Foreign Key M M 1 Primary Key Academic 1 Fee 1 1 Primary Key Primary Key Primary Key

  39. 1254 Saman M 12/10/92 Colombo 8578 Nadun M 15/11/92 Kalutara

  40. wl=re wvx.= lafIa;% - Wmßuwl=re 255 os.=fm< jpk - wl=re 255 jeä b,lalï oskhlafõ,djla uqo,a tall iajhxlS%hwxl wjia:d 2la iys; o;a;

More Related