210 likes | 347 Views
SS16: Opportunities in the Study of Ocean Particle Flux@. From ship-tethered to free drifting imaging systems in the ocean; What we have observed in the past and what we shall observe in the future to better understand and model particle flux. Stemmann L., Guidi, L., Boss, E., Claustre, H. `
E N D
SS16: Opportunities in the Study of Ocean Particle Flux@ From ship-tethered to free drifting imaging systems in the ocean; What we have observed in the past and what we shall observe in the future to better understand and model particle flux. Stemmann L., Guidi, L., Boss, E., Claustre, H. ` UPMC Université Paris 06, UMR7093, Laboratoire d’Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France} School of Marine Sciences, 5706 Aubert Hall, University of Maine, Orono, ME 04469-5706
Biological pump or Geochemical pump ? CO2 N: Nutriment P: Phytoplancton Z: Zooplancton D: Detritus ? CO2
Biological pump or Geochemical pump ? CO2 Advection, turbulence CO2
Biological pump or Geochemical pump ? CO2 Advection, turbulence • 4D Observation of individuals and particles • Ecosystem Realistic Simplification CO2
Perspectives: Strong development of imaging systems and also their miniaturization for in situ monitoring 1) Laboratory instruments FLOWCAM, ZOOSCAN, ... 2) In situ instruments used from ships UVP, VPR, SIPPER, Underwater Digital Holocamera , ... 3) In situ instruments on autonomous vehicles SOLOPC Checkley et al., 2008 Benfield et al., 2007
Examples of PSD and vertical flux from ship tethered imaging sensors Lampitt et al., 1993, North Atl. and then Graham et al., 2000, Monterey Bay Stemmann et al., 2000, Mediterranean Sea Goldthwait et al., 2006, Monterey Bay Hypothesis: DVM or diel cycle in upper turbulence Short time scales Long time scales Stemmann et al., 2002 Mediterranean Sea
Examples of PSD and vertical flux from ship tethered imaging sensor (Guidi et al., session 58) 897 estimates of b distributed over 34 provinces Global b: -0.75 Global Sequestration: 0.37 Gt C year-1
Global biogeography of mesopelagic macrozooplankton 200 profils of the UVP4 (6 years of sampling) 50-1000m, no size measurments Stemmann et al., 2008 • Sarcodines : an important component of macrozooplankton community (<40%). • Definition of 9 provinces that fits Longhurst biogeochemical regions 1000 profiles(Romagnan et al., session 72)
Opportunities in the Study of Ocean Particle Flux • Global network of observations • ARGO-> BIOARGO+vision • fixed stations + vision • cruises of opportunity • Oceanographic data center for QC and large diffusion Particulate Organic Carbon (size spectra) D • Ecosystem monitoring • - Data assimilation in models for Carbone fluxes and marine ressources. macro and mesoplankton (Taxa size spectra) Z P Pico and microplankton (taxa, size spectra) N CTD and geochemical data
Systems based on optics NABE2008, Briggs et al., 2008 Monterey Bay, Petrik et al., 2013
System based on images acquisition and treatment Image acquisition (0-6000 m) Image in situ analysis (Size threshold) images are saved Real time automatic counting of Large Particulate Matter (all object ESD>100µm) With a delay computer assisted recognition: Large Aggregates – Zooplankton (object ESD >500µm) Particle size spectra CTD Zooplankton size spectra
UVP data format for ODV (real time counting and sizing) MALINA cruise: 154 UVP profils (25-1800m), one PSD every 5 m, with CTD, Rosette, 8Mo CAN BE SEND BY ARGO, IRIDIUM METADATA: context //<Creator>marc.picheral@obs-vlfr.fr</Creator> //<CreateTime>2010-08-20T10:01:12</CreateTime> //<Source>baseuvp5_malina2009</Source> //<SourceLastModified>31-Jan-000T</SourceLastModified> //<DataField>Ocean</DataField> //<DataType>Profiles</DataType> //<Method>Particle abundance and volume from the Underwater Vision Profiler. the ......</Method> //<Owner1>Lars.stemmann[at]obs-vlfr.fr http://www.obs-vlfr.fr/LOV/ZooPart/Portal/ Laboratoire d'Oceanographie de Villefranche B.P. 28 Villefranche-Sur-Mer France +33 (0)4 93 76 38 11 +33 (0)4 93 76 38 34 http://www.obs-vlfr.fr/LOV/ZooPart/UVP/</Owner1> Cruise:METAVAR:TEXT:20;Station:METAVAR:TEXT:20;Rawfilename:METAVAR:TEXT:20;UVPtype:METAVAR:TEXT:6;CTDrosettefilename:METAVAR:TEXT:40;yyyy-mm-dd hh:mm:METAVAR:TEXT:40;Latitude [degrees_north]:METAVAR:DOUBLE;Longitude [degrees_east]:METAVAR:DOUBLE;Depth [m]:PRIMARYVAR:DOUBLE;Sampled volume[L];LPM (0.06-0.53mm)[#/L];LPM (0.53-1.06mm)[#/L];LPM (1.06-2.66mm)[#/L];LPM (0.06-2.66mm)[#/L];LPM biovolume (0.06-0.53mm)[ppm];LPM biovolume (0.53-1.06mm)[ppm];LPM biovolume (1.06-2.66mm)[ppm];LPM biovolume (0.06-2.66mm)[ppm];LPM (0.06-0.07mm)[#/L];LPM (0.07-0.09mm)[#/L];LPM (0.09-0.11mm)[#/L];LPM (0.11-0.14mm)[#/L];LPM (0.14-0.17mm)[#/L];LPM (0.17-0.21mm)[#/L];LPM (0.21-0.27mm)[#/L];........;LPM biovolume (4.22-5.32mm)[ppm];LPM biovolume (5.32-6.7mm)[ppm];LPM biovolume (6.7-8.44mm)[ppm];LPM biovolume (8.44-10.64mm)[ppm];LPM biovolume (10.64-13.4mm)[ppm];LPM biovolume (13.4-16.88mm)[ppm];LPM biovolume (16.88-21.27mm)[ppm];LPM biovolume (21.27-26.79mm)[ppm];Temp;Trans;Fluo;Sal;Dens;svan;N2;sigt;theta;sigthe;FreezT-;O2;pH;NO3;Par;SPar malina2009;malina001;HDR20090718234959;uvp5;0902_001;2009-07-18 23:49:59;70.4808;-135.1083;5;79.56;405.8698;0.33937;0;406.2092;0.53393;0.054187;0;0.58812;0.000000;0.000000;255.417300;76.533434;38.800905;21.669180;7.302665;4.160382;1.458019;0.527903;0.226244;0.075415;0.037707;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.126479;0.085347;0.076972;0.076662;0.049646;0.053766;0.038764;0.026295;0.023097;0.014930;0.016160;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;1.941000;83.750000;0.000000;NaN;NaN;NaN;NaN;NaN;NaN;NaN;NaN;NaN;8.217000;-0.278000;32.216000;110.590000 malina2009;malina001;HDR20090718234959;uvp5;0902_001;2009-07-18; adding 44000 images 300 Mo ARGOS, IRIDIUM TRANSMISSION ? METADATA: file content DATA
THE KEY OF THE SUCCESS: • AGREED PROCEDURES (image format, treatment, semi-automatic recognition, intercalibration) • AGREED DATA MANAGEMENT • AGREED DATA DISTRIBUTION • AGREED MODELING FRAMEWORKS • SUMMER SCHOOLS FOR THE USERS • The biological, particle community has not reached yet a sufficient maturity in using images. • These are propositions that we could discuss now building on the biogeochemical community experience
What should Biogeochemical models represent ? The Future: box models + size spectra The past: box models • Functional groups • Size spectra for particles, some zooplankton groups Stemmann and Boss (2012)
Thank you By the way, do you know what they are ???
Particle dynamics in the sea. What is known, not well known and unknown? • Known: the ocean is a complex soup of particles • Not well know but will improve • Particle spatial distribution, • Particle transport as a function of size • in situ Particle size spectra in relation to plankton community • Particles shapes, organic matter quality (multispectral imaging) • Particles ballast (optical properties) • Not known and difficult to measure/estimate • processes acting on flux attenuation (bacteria/zooplankton) and impact on the other elements (TEI) • Impact of coagulation and fragmentation from surface to the deep (TEP role)
How to detect, identify and measure particles and organisms size spectra? Non exhaustive review of instruments sizing particles used in marine systems
Examples of zooplankton from ship tethered optics and UVP(Romagnan et al., session 72) Forest et al., 2012 UVP, Arctic Jackson and Checkley (2011) SOLOPC data Monterey Bay Stemmann and Boss, 2012 UVP, Mediterranean sea Stemmann and Boss, 2012 UVP, Tropical S. Pacific
Images great perspectives • Provide Indicators of ecosystem status (abundance, biomass, taxa, size spectra), • Can be obtained using lab and in situ instruments, they provide high frequency data, better technologies These indicators can be used to develop mathematical models also for zooplankton when size is important - zooplankton size spectra to get information on physiological rates (Platt & Denman 1978, ... Baird et al., 2004, 2010, Zhou 2006, Maury et al.,2007 ). - vertical distribution of appendicularian and effect on vertical fluxes (Lombard et al., 2009). - appendicularians in recent PFT models (Berline et al., 2010). - vertical distribution of particle fluxes (Stemmann et al., 2004). - and particle dynamics models (see previous slide)
Non exhaustive review of particle size structured models where are the data on particle size spectra ?
UVP data format for ODV (with recognition on images) METADATA: context campagne MALINA: 44000 images 2.1 Mo for data file 300 Mo for images ARGOS, IRIDIUM TRANSMISSION ? //<Creator>marc.picheral@obs-vlfr.fr</Creator> //<CreateTime>2011-05-04T22:09:43</CreateTime> //<Source>K:\uvp5_gatekeeper2010\results\baseuvp5_gatekeeper</Source> //<SourceLastModified>31-Jan-000T</SourceLastModified> //<DataField>Ocean</DataField> //<DataType>Profiles</DataType> //<Method>Particle abundance and volume from the Underwater Vision Profiler. The Underwater Video Profiler is designed for the quantification of particles and of large zooplankton in the water column. Light reflected by undisturbed target objects forms a dark-field image.</Method> //<Owner1>Lars.stemmann[at]obs-vlfr.fr http://www.obs-vlfr.fr/LOV/ZooPart/Portal/ Laboratoire d'Oceanographie de Villefranche B.P. 28 Villefranche-Sur-Mer France +33 (0)4 93 76 38 11 +33 (0)4 93 76 38 34 http://www.obs-vlfr.fr/LOV/ZooPart/UVP/</Owner1> Cruise:METAVAR:TEXT:20;Station:METAVAR:TEXT:20;Rawfilename:METAVAR:TEXT:20;UVPtype:METAVAR:TEXT:6;CTDrosettefilename:METAVAR:TEXT:20;yyyy-mm-dd hh:mm;Latitude [degrees_north]:METAVAR:DOUBLE;Longitude [degrees_east]:METAVAR:DOUBLE;Zm (m):DOUBLE;Zi (m):DOUBLE;Ze (m):DOUBLE;Sampled vol. (m3):DOUBLE;annelid(#/m3):DOUBLE;crust_cop(#/m3):DOUBLE;crust_other(#/m3):DOUBLE;det_aggregate(#/m3):DOUBLE;det_feces_like(#/m3):DOUBLE;det_fiber(#/m3):DOUBLE;fish(#/m3):DOUBLE;gel_carn_chaetognath(#/m3):DOUBLE;gel_carn_ctenophore(#/m3):DOUBLE;gel_carn_medusa(#/m3):DOUBLE;gel_carn_siphonophore(#/m3):DOUBLE;gel_filt_app(#/m3):DOUBLE;gel_filt_other(#/m3):DOUBLE;gel_other(#/m3):DOUBLE;moll_pteropod(#/m3):DOUBLE;other_heart_like(#/m3):DOUBLE;phyt_diatom_chain_like(#/m3):DOUBLE;phyt_tricho(#/m3):DOUBLE;polychaetha(#/m3):DOUBLE;protozoa_sarcomastigophora(#/m3):DOUBLE;protozoa_sarcomastigophora_foram_like(#/m3):DOUBLE;protozoa_sarcomastigophora_globule(#/m3):DOUBLE;protozoa_sarcomastigophora_legs(#/m3):DOUBLE;protozoa_sarcomastigophora_phaeodarea(#/m3):DOUBLE;protozoa_sarcomastigophora_polycystina(#/m3):DOUBLE;protozoa_sarcomastigophora_radiolaria(#/m3):DOUBLE;protozoa_sarcomastigophora_spines(#/m3):DOUBLE;to_skip(#/m3):DOUBLE gatekeeper2010;m1_003;HDR20100711001202;uvp5;003;2010-07-11 00:12:02;36.7392;-122.0397;2.6769;0;25;1.8075;0;0;0;522.13;771.0927;0;0;0;0;0;0;0;0;0;0;0;342.3237;0;0;0;0;0;0;0;0;0;0;0 gatekeeper2010;m1_003;HDR20100711001202;uvp5;003;2010-07-11 00:12:02;36.7392;-122.0397;39.3443;25;50;0.39;0;0;0;3173.0769;11474.359;0;0;0;0;0;0;0;0;0;0;0;993.5897;0;0;0;0;0;0;0;0;48.0769;0;16.0256 METADATA: file content adding 44000 images 300 Mo ARGOS, IRIDIUM TRANSMISSION ? DATA