140 likes | 148 Views
This article discusses the anonymity of mix networks and the calculation of anonymity probabilities using a formal model. It explores how information can change while preserving anonymity, and provides insights into generating and erasing real traces to protect against attackers.
E N D
Definition of the Anonymity of Mix Network Runs Andrei Serjantov University of Cambridge Computer Laboratory
B Q R D Metric in Mix Networks (PET 2002) • Metric also useful in mix networks A {(A,0.125), (B,0.125), (C,0.25), (D,0.5)} C
A B C {A,B,C,D} Q R D Route Length (Sets) (PET 2002) • Now we look at how information can change APD, but not the • underlying set • Mix systems, often have a maximum route length (eg Mixmaster)
A Q 1 2 R B 3 S C Route Length (probabilities) (PET 2002) • Max route length = 2. A"1,3,2"Q cannot happen • C"3,2" {Q or R}. S has the anonymity set {A,B} • Q,R still have the anonymity set {A,B,C} but a different anonymity probability distribution (with a lower entropy)
Hence we need a principled way of calculating the anonymity of a message as seen by the attacker!
R2 Sender1 M1 R3 Sender2 M2 Sender3 R1 A Formal Model of a Mix Network • Given a set of input messages, our model can tell us what the mix network will do • (a real trace of events which happen in the network) {(Sender1,[M1,M2],R1) (Sender2,[M1],R2) (Sender3,[M2],R3)}
R2 Sender 1 M1 R3 Sender 2 M2 Sender3 R1 Generating a Real Trace {(Sender1,[M1,M2],R1,C1) (Sender2,[M1],R2,C2) (Sender3,[M2],R3,C3)} [(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2) ,(Mix 1,Recv (R 2),RecvRecv,C 2),(Mix 1,M 2,MixRecv,C 1) ,(Sender 3,M 2,MixRecv,C 3) ,(Mix 2,Recv (R 3),RecvRecv,C 3) ,(Mix 2,Recv (R 1),RecvRecv,C 1)]
R2 R2 Sender 1 Sender 1 M1 M1 R3 R3 Sender 2 Sender 2 M2 M2 Sender3 Sender3 R1 R1 Erasing the Real Trace (1) • From this, we can work out what the attacker will observe • (the real get erased to remove the information the attacker cannot see) • We get an erased trace
R2 R2 Sender 1 Sender 1 M1 M1 R3 R3 Sender 2 Sender 2 M2 M2 Sender3 Sender3 R1 R1 Erasing the Real Trace (2) Real trace: [(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2) ,(Mix 1,Recv (R 2),RecvRecv,C 2),(Mix 1,M 2,MixRecv,C 1) ,(Sender 3,M 2,MixRecv,C 3),(Mix 2,Recv (R 3),RecvRecv,C 3) ,(Mix 2,Recv (R 1),RecvRecv,C 1)] Erased trace: [(Sender 1,M 1),(Sender 2,M 1),(Mix 1,Recv (R 2)), (Mix 1,M 2),(Sender 3,M 2),(Mix 2,Recv (R 3)),(Mix 2,Recv (R1))]
R2 Sender 1 M1 R3 Sender 2 M2 Sender3 R1 From the Attacker’s Point of View • The attacker has an observation (an erased trace Obs) • He now uses the model to find all the real traces which erase to Obs • Call these All Obs =[(Sender 1,M 1),(Sender 2,M 1),(Mix 1,Recv (R 2)), (Mix 1,M 2),(Sender 3,M 2),(Mix 2,Recv (R 3)), (Mix 2,Recv (R1))]
R2 R2 R2 R2 Sender 1 Sender 1 Sender 1 Sender 1 M1 M1 M1 M1 R3 R3 R3 R3 Sender 2 Sender 2 Sender 2 Sender 2 M2 M2 M2 M2 Sender3 Sender3 Sender3 Sender3 R1 R1 R1 R1 Finding All Scenarios I II IV III In 2 out of the 4 scenarios Sender 3 sent the message to R1
(In ASCII!) [[(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2),(Mix 1,Recv (R 2),RecvRecv,C 2),(Mix 1,M 2,MixRecv,C 1),(Sender 3,M 2,MixRecv,C 3),(Mix 2,Recv (R 3),RecvRecv,C 3),(Mix 2,Recv (R 1),RecvRecv,C 1)], [(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2),(Mix 1,Recv (R 2),RecvRecv,C 2),(Mix 1,M 2,MixRecv,C 1),(Sender 3,M 2,MixRecv,C 3),(Mix 2,Recv (R 3),RecvRecv,C 1),(Mix 2,Recv (R 1),RecvRecv,C 3)], [(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2),(Mix 1,Recv (R 2),RecvRecv,C 1),(Mix 1,M 2,MixRecv,C 2),(Sender 3,M 2,MixRecv,C 3),(Mix 2,Recv (R 3),RecvRecv,C 3),(Mix 2,Recv (R 1),RecvRecv,C 2)], [(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2),(Mix 1,Recv (R 2),RecvRecv,C 1),(Mix 1,M 2,MixRecv,C 2),(Sender 3,M 2,MixRecv,C 3),(Mix 2,Recv (R 3),RecvRecv,C 2),(Mix 2,Recv (R 1),RecvRecv,C 3)]]
Probabilities • Suppose: • All senders equally likely to send to all receivers • All routes equally likely to be chosen • All scenarios are equiprobable • For the message which arrives at R1, the anonymity probability distribution is: • {(Sender 1,0.25), (Sender 2, 0.25), (Sender 3,0.5)} • (Glossing over the exact details)