381 likes | 646 Views
Competing insulating phases in one-dimensional extended Hubbard models. Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya). M.T. & A.F., PRL 88, 056402 (2002) PRB 66, 245106 (2002) PRB 69, 035103 (2004). Contents.
E N D
Competing insulating phases in one-dimensional extended Hubbard models Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya) M.T. & A.F., PRL 88, 056402 (2002) PRB 66, 245106 (2002) PRB 69, 035103 (2004) KIAS
Contents One-dimensional models of interacting electrons at half filling • Extended Hubbard model • Ionic Hubbard model • Generalized Hubbard ladder Various types of insulators: Mott insulator, Charge-Density Wave, Peierls insulator, Band insulator, staggered-flux state, …. Weak-coupling approach, Bosonization KIAS
t U V Extended Hubbard model at half filling KIAS
Standard phase diagram (before 1999) Emery (1979) Hirsch (1984) Cannon, Scalettar, Fradkin (1991) ………. KIAS
charge sector spin sector Spin sector Charge gap if Spin gap if Weak-coupling theory (g-ology) L R 1-loop RG KIAS
Phase diagram since 1999 Discovery of Bond-charge-density wave (BCDW) phase or Bond-Order-Wave (BOW) Found numerically Nakamura (1999, 2000) Sengupta, Sandvik, Campbell (2002) ….. KIAS
Vertex correction Degeneracy of zeros of and are lifted Separate transitions in charge & spin sectors In the strong-coupling regime 1st order SDW-CDW transition KIAS
Bosonization charge spin Order parameters KIAS
Bosonized form of the Hamiltonian density kinetic energy marginal perturbation relevant perturbation irrelevant perturbation SU(2) symmetry etc KIAS
Order parameters Classical analysis KIAS
Phase transitions SDW-BCDW transition: 2nd order CDW-BCDW transition: 2nd order CDW-SDW transition:1st order KIAS
Ground-state phase diagram from bosonization approach 1-loop RG + classical analysis M. Tsuchiizu and A.F., Phys. Rev. Lett. 88, 056402 (2002) KIAS
Numerical Results Quantum Monte Carlo Sengupta, Sandvik, & Campbell, Phys. Rev. B 65, 155113 (2002) DMRG Y.G. Zhang, PRL 92, 246404 (2004) KIAS
Sandvik, Balents & Campbell, PRL 92, 236401 (2004) • Tricritical point on the CDW-BCDW phase boundary SSE QMC Luttinger liquid parameter at the continuous transition KIAS
umklapp scattering becomes relevant for KIAS
Phase diagram (schematic) 1st order transition CDW-BCDW c=1 Gaussian SDW-BCDW c=1 SU(2)1 KIAS
and Mott insulator and Band insulator Extended Ionic Hubbard model at half filling • Ionic Hubbard model Nagaosa & Takimoto (1986), Egami, Ishihara, & Tachiki (1993) Fabrizio, Gogolin, & Nersesyan, PRL 83, 2014 (1999) Quantum Phase Transition ? KIAS
Ising KT 0 MI BI SDI Fabrizio, Gogolin, & Nersesyan, PRL 83, 2014 (1999) • Spontaneously Dimerized Insulating Phase (SDI) (= BCDW Phase) KIAS
Extended ionic Hubbard model nearest-neighbor repulsion V Bosonization perturbative RG + classical analysis KIAS
Bosonized form of the Hamiltonian density Kinetic energy marginal perturbation relevant perturbation irrelevant perturbation KIAS
Classical analysis Gaussian Ising KIAS
1st order transition Ground-state phase diagram cf. KIAS
V⊥, J⊥ tpair t⊥ Generalized Hubbard ladder at half filling KIAS
Various Insulating Ground States that can appear in half-filled ladders rung singlet state (D-Mott) Ex. SO(5) ladder model charge density wave (CDW) ground-state phase diagram singlet paring state (S-Mott) staggered flux state (SF) Lin, Balents & Fisher (1998) Fjaerestad & Marston (2002) d-density wave orbital antiferromagnet KIAS
Strong-coupling approach 4 basis states KIAS
ordered state Ising model in a transverse field • CDW—S-Mott transition • D-Mott—S-Mott transition disordered state XXZ model in a magnetic field gapless (c=1) Gaussian transition KIAS
Weak-coupling approach s-wave density wave order p-wave s-wave staggered dimerization p-wave d-wave d-wave f-wave d-density-wave =SF f-wave These states break Z2 symmetry KIAS
Bosonization charge spin Hamiltonian density pinning potential Order parameters KIAS
order disorder • Ising transitions Disorder parameters KIAS
Ising transition (c=1/2) SU(2) criticality (c=3/2) 2 or 1st order transition Universality class of quantum phase transitions Gaussian transition (c=1) M. Tsuchiizu and A. Furusaki Phys. Rev. B 66, 245106 (2002) KIAS
model V’ KIAS
Summary • Competing interactions competing phases exotic order • Various (density) ordered phases • Various Mott insulating phases • 2D systems ? M.T. & A.F., PRL 88, 056402 (2002) PRB 66, 245106 (2002) PRB 69, 035103 (2004) KIAS