130 likes | 261 Views
S uper WIMP Dark matter. in SUSY with a Gravitino LSP. Shufang Su • U. of Arizona. See also, Jonathan Feng’s talk, SuperWIMPs and Slepton Traps. J. Feng, F. Takayama, S. Su hep-ph/0404198, 0404231. ~. th G v -1 ( gravitional coupling) -2
E N D
SuperWIMP Dark matter in SUSY with a Gravitino LSP Shufang Su • U. of Arizona See also, Jonathan Feng’s talk, SuperWIMPs and Slepton Traps J. Feng, F. Takayama, S. Su hep-ph/0404198, 0404231
~ • thG v-1 (gravitional coupling)-2 • (comparig to WIMP of weak coupling strength) • vtoo small • thG too big, overclose the Universe ~ Why is the gravitino not usually considered as DM? - In supergravity, for mG» GeV – TeV ~ However, gravitino can get relic density by other means SuperWIMP
WIMP SWIMP + SM particle - FRT hep-ph/0302215, 0306024 WIMP 104 s t 108 s SWIMP SM Gravitino LSP LKK graviton 106
Outline - • SWIMP dark matter and gravitino LSP • Constraints • Late time energy injection and BBN • NLSP gravitino +SM particle slepton, sneutrino, neutralino - approach I: fix SWIMP=0.23 - approach II: SWIMP=(mSWIMP/mNLSP) thNLSP • Collider phenomenology • Conclusion Updates since Jan SLAC LC workshop
~ SWIMP: G (LSP) WIMP: NLSP mG» mNLSP ~ NLSP G + SM particles SWIMP and SUSY WIMP - • SUSY case ~ Ellis et. al., hep-ph/0312262; Wang and Yang, hep-ph/0405186. 104 s t 108 s
/10-10 = 6.1 0.4 Dark matter density G· 0.23 ~ Fields, Sarkar, PDG (2002) Constraints - ~ NLSP G + SM particles - approach I:fix SWIMP=0.23 - approach II:SWIMP=(mSWIMP/mNLSP) thNLSP CMB photon energy distribution Big bang nucleosynthesis Late time EM/had injection could change the BBN prediction of light elements abundances
~ had EM EM (GeV) EM » mNLSP-mG Cyburt, Ellis, Fields and Olive, PRD 67, 103521 (2003) Kawasaki, Kohri and Moroi, astro-ph/0402490 BBN constraints on EM/had injection - • Decay lifetime NLSP • EM/had energy release EM,had=EM,had BrEM,had YNLSP
approach I:fix G = 0.23 ~ NLSP, EM,had=EM,had BEM,had YNLSP m · 80 » 300 GeV apply CMB and BBN constraints on (NLSP, EM/had) viable parameter space 200 GeV · m · 400 » 1500 GeV mG¸ 200 GeV ~ YNLSP: approach I - slepton and sneutrino
G = (mG/mNLSP) thNLSP ~ ~ Approach II: sleptonand sneutrino -
Collider Phenomenology - SWIMP Dark Matter • no signals in direct / indirect dark matter searches • SUSY NLSP:rich collider phenomenology NLSP in SWIMP: long lifetime stable inside the detector • Charged slepton highly ionizing track, almost background free Distinguish from stau NLSP and gravitino LSP in GMSB • GMSB: gravitinom » keVwarm not cold DM • collider searches:other sparticle (mass) • (GMSB) ¿(SWIMP):distinguish experimentally Feng and Smith, in preparation.
Sneutrino and neutralino NLSP vs. , 0.23 favor gravitino LSP ~ ~ - • sneutrino and neutralino NLSP missing energy signal: energetic jets/leptons + missing energy Is the lightest SM superpartner sneutrino or neutralino? • angular distribution of events (LC) Does it decay into gravitino or not? • sneutrino case: most likely gravitino is LSP • neutralino case: most likely neutralino LSP • direct/indirect dark matter search positive detection disfavor gravitino LSP • precision determination of SUSY parameter: th, ~ ~
~ ~ ~ ~ ~ G G G G G • Decay life time • SM energy distribution Mpl mG SUSY breaking scale ~ NLSP SM NLSP SM SM NLSP Capture particle: Goity, Kossler and Sher, hep-ph/9305244 NLSP SM SM NLSP Supergravity at colliders Buchmuller et. al. hep-ph/0402179 SWIMPs and slepton traps Feng and Smith In preparation… See Feng’s talk
Conclusions - • SuperWIMP is possible candidate for dark matter • SUSY models SWIMP:gravitino LSP WIMP:slepton/sneutrino/neutralino • Constraints from BBN: EM injection and hadronic injection need updated studies of BBN constraints on hadronic/EM injection • Favored mass region • Approach I: fix G=0.23 • Approach II: G = (mG/mNLSP) thNLSP • Rich collider phenomenology(no direct/indirect DM signal) • charged slepton:highly ionizing track • sneutrino/neutralino:missing energy • Other implications … ~ ~ ~