1 / 48

Saeedeh Rashidi and Nasrin Soltankhah

Saeedeh Rashidi and Nasrin Soltankhah. On the possible volume of µ-( v,k,t ) trades. Department of Mathematics Alzahra University Vanak Square 19834 Tehran, I.R. Iran. µ. µ=3. Trade. 1960 هدایت 1979-1980 هدایت Li روش ترید آف 1986 Hwaug 1986 Milici & Quattrocchi

barto
Download Presentation

Saeedeh Rashidi and Nasrin Soltankhah

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SaeedehRashidi and NasrinSoltankhah On the possible volume of µ-(v,k,t) trades Department of Mathematics AlzahraUniversity Vanak Square 19834 Tehran, I.R. Iran

  2. µ µ=3

  3. Trade 1960 هدایت 1979-1980 هدایتLi روش ترید آف 1986 Hwaug 1986 Milici & Quattrocchi 1992 محمودیان و سلطانخواه . . . 1916 2-(v,3,2), s=6,4

  4. Trade(h) ترید در طرح های بلوکی ترید در مربع های لاتین ترید در گراف G-trade Decomposition H ترید جهتدار

  5. -(v,k,t) Latin trade trade -(v,k,t) trade Latin trade

  6. Latin square

  7. way-Latin trade هر سطر از هر کدام از لاتین تریدها شامل عناصر یکسان می باشند. =2

  8. Latin trade

  9. Latin square

  10. way-Latin trade حجم

  11. BIBD

  12. STS(7) STS(v) K=3 t=2 KTS(v) STS(v)

  13. t-(v,k) trade x12 x34 y13 y24 z14 z23 x13 x24 y14 y23 z12 z34 Steiner trade xy12 xy13 (v,k,t)= t-(v,k) xy34 xy24

  14. Defining Set

  15. STS(7): x12 x34 z14 z23 x12 x34 y13 y24 x13 x24 y12 y34 x14 x23 z12 z34 x12 x34 y13 y24 z14 z23 xyz y13 y24 z14 z23 y14 y23 z13 z24 S={x12,y13,z23}

  16. t-(v,k) trade

  17. (v,k,t) trade تعداد بلوک های شامل عنصر x در T تعداد بلوک های شامل عنصر x,y در T

  18. (v,k,t) trade • هر t ترید یک i ترید برای می باشد. minimal

  19. (v,k,t) trade T : (v,k,t) volume =s x; <s (v,k,t-1)

  20. 2-(v,k,t) trade برای t>3 2-(v,k,t)از حجم وجود ندارد. T=: 2-(v,k,t)

  21. 2-(v,k,t) trade

  22. 2-(v,k,t) trade ترید های از حجم دارای ساختار منحصر به فرد می باشند. t=1

  23. 2-(v,k,t) trade . t=2 ترید از حجم {1,2,3,5} وجود ندارد. گانه µ ترید تعمیم

  24. -(v,k,t) trade t=2 xy12 xy13 xy14 xy34 xy24 xy23

  25. x12 x34 y13 y24 z14 z23 x14 x23 y12 y34 z13 z24 x13 x24 y14 y23 z12 z34 3-(v,3,2) steiner trade

  26. -(v,k,t) trade

  27. Trade off

  28. STS(7): x12 x34 y13 y24 z14 z23 xyz x12 x34 y13 y24 z14 z23 x14 x23 y12 y34 z13 z24 x13 x24 y14 y23 z12 z34 3-(7,3,2):

  29. Intersection

  30. Intersection & trade

  31. x12 x34 y13 y24 z14 z23 xyz x14 x23 y12 y34 z13 z24 xyz x13 x24 y14 y23 z12 z34 xyz 3-(7,3,2)

  32. Steiner

  33. یکتا

  34. ساختاریکتا µ=3

  35. STS(v), b-m 8,10,11,13

  36. 33-(v,4,2) Steiner trade

  37. THANKS Thanks

More Related