1 / 33

Kvantitatív módszerek

Kvantitatív módszerek. Készítette: Dr. Kosztyán Zsolt Tibor kzst@vision.vein.hu http ://vision.vein.hu/~kzst/oktatas/km/index.htm. 6. Matematikai statisztika. A statisztikai megfigyelés véletlen tömegjelenségekre irányul.

baruch
Download Presentation

Kvantitatív módszerek

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kvantitatív módszerek Készítette: Dr. Kosztyán Zsolt Tibor kzst@vision.vein.hu http://vision.vein.hu/~kzst/oktatas/km/index.htm 6.

  2. Matematikai statisztika • A statisztikai megfigyelés véletlen tömegjelenségekre irányul. • A statisztikai minta véletlen jelenségre vonatkozó véges számú megfigyelés eredménye. Események bekövetkezésének, illetve be nem következésének hosszú megfigyelés során valószínűsége van.

  3. Hipotézisvizsgálat • A statisztika egyik fő alkalmazási területe a döntések alátámasztása statisztikai hipotézisek vizsgálatával. • Null-hipotézis (H0): különbség hiányát állítja • Alternatív hipotézis (Hl): különbség meglétét állítja

  4. Hipotézisvizsgálat • A nullhipotézis ismeretében egy próbastatisztikát számítunk, amelynek ismerjük az eloszlását. Az eloszlást ismerve megmondhatjuk, milyen valószínűséggel kaphatunk egy próbastatisztika értéket, ha a hipotézis igaz. • Ha a valószínűség kicsi, a hipotézist elvetjük, azaz valószínűtlen, hogy H0 igaz lenne.

  5. Hipotézisvizsgálat • Elsőfajú hiba: H0 igaz, de elvetjük • A hiba elkövetési valószínűségét szignifikancia-szintnek nevezzük • (p=0,05) 95%, hogy H0 igaz • Másodfajú hiba: H0 nem igaz, de elfogadjuk. Baloldali tesztek Kétoldali tesztek Jobboldali tesztek H0 = H1 < H0 = H1 > H0 = H1 ≠

  6. Statisztikai próbák • Parametrikus próbák: normál eloszlású minták • két mintát kell összevetnünk • Átlagok azonosak-e: kétmintás t-próba • Szórások azonosak-e: F-próba • Nem parametrikus próbák: teszt alkalmazása nem függ a változók eloszlásától; függetlenség- és homogenitás vizsgálat – c2próba, KS-próba

  7. Összefüggés-vizsgálat • Több megfigyelt tényező hogyan függ egymástól • Ellenőrzött, laboratóriumi körülmények között az összefüggés függvénykapcsolatként írható le. • A társadalomtudomány területén előforduló jelenségek annyira bonyolultak, hogy az események bekövetkezése sokszor a véletlentől is függ.

  8. Összefüggés-vizsgálat • Sztochasztikus kapcsolat: a független változó értéke nem határozza meg egyértelműen a függő változó értékét, (pl. véletlenszerűen ingadozik egy legvalószínűbb érték körül.)

  9. Összefüggés-vizsgálat • Egyik változó változásával a másik milyen irányba és mennyit változik? REGRESSZIÓ-ANALÍZIS • Két változó között milyen irányú és mennyire szoros kapcsolat van? KORRELÁCIÓ-ANALÍZIS

  10. Regresszió-analízis • Két változó kapcsolatát leíró függvényt kapjuk eredményül. • Sokszor feltételezünk ok-okozati kapcsolatot, de a vizsgálat nem bizonyítja azt! • Grafikusan pontdiagramra fektetett egyenes, ha lineáris összefüggést feltételezünk.

  11. Regresszió-analízis

  12. 1. példa

  13. Regresszió-analízis - SPSS

  14. Regresszió-analízis - SPSS H1 SSR SSE SST H0 H1

  15. Determinációs együttható négyzete: “Residual” “Regression” “Total”

  16. R2 = SSR/SST

  17. Regresszió-analízis • A regressziós egyenes a vizsgálati tartományon belül érvényes, azon túl, hosszabb távon nem alkalmas predikciós célokra • A regressziós egyenes egyenlete:Y=függő/magyarázott változó X=független/magyarázó változó • Kapcsolat lehet pozitív ↗↗ , vagy negatív↗↘ • Egyenes illesztése legkisebb négyzetek módszerével történik.

  18. Regresszió-analízis alkalmazhatóságának feltételei • E(u)=0 • VAR(u)=s2 • A hibatagok függetlenek egymástól. • x és u függetlenek. • u ~ N(0,s)

  19. Normalitás feltétel

  20. Homoszkedaszticitás

  21. A standard lineáris modell

  22. Többváltozós regresszió-analízis x1 y1 Nem feltétlen, de legtöbb esetben jó közelítésként használható. Ha a linearitás nem teljesül, akkor át kell konvertálni olyan modellé, amely kölcsönösen egyértelmű az eredeti modellünkre. Az alkalmazhatóság feltételei megegyeznek a lineáris regressziós modell alkalmazásának feltételeivel. x2 • Lineáris-e a regresszió? • Mit jelent a korrelációs együttható értéke? • Milyen feltételek mellett használható a lineáris regressziós modell? y2 x3 R=1 esetén: LINEÁRIS függvénykapcsolat a magyarázó és a magyarázott változók között! R=0 esetén: nincs LINEÁRIS függvénykapcsolat a magyarázó és a magyarázott változók között! R=-1 esetén: (negatív) LINEÁRIS függvénykapcsolat van x és y között! yn xk • E(ui)=0, i :=1,2,…,n (szisztematikus hibát nem vétettünk) • var(ui)=s2, i :=1,2,…,n (nincs heteroszkedaszticitás) • ui és uj függetlenek minden i-re és j-re (nincs autokorreláció) • xi determinisztikus nem valószínűségi változó • ui ~N(0,s2), i :=1,2,…,n • az xj-k között nincs lineáris összefüggés (nincs multikollinearitás)

  23. Többváltozós regresszió-analízis • Magyarázó változók redukálása: • Miért? • Hogyan? • Összes lehetséges megoldás • FORWARD eljárás • BACKWARD eljárás • STEPWISE eljárás Kevesebb magyarázó változó → Kisebb a hiba varianciája. DE! torzított lesz a becslés! Fokozatos „beléptetés”. Mindig a legnagyobb parciális korrelációval rendelkező változót veszi be. Fokozatos „kiléptetés”. Mindig a legkisebb parciális korrelációval rendelkező változót veszi ki. Minden iterációban léphetnek be és léphetnek ki is elemek. Viszont a probléma nem lineáris. Nem biztos, hogy optimális lesz a megoldás.

  24. 2. példa • Mi hat a jövedelemre? • Feltételezhetjük pl., hogy • Az iskolai végzettség/elvégzett iskolai osztályok • A munkavállaló neme • A munkavállaló kora • ? • Modell egyenlet: FOJOV=b0+b1ISKOSZT+b2NEME+b3KOR+u Dummy-változó

  25. Beállítás – SPSS-ben

  26. Eredmények (1) Valamennyi magyarázó változó szükséges! Kicsi a magyarázó képesség! A modellünk és a magyarázó változóink is szignifikánsak!

  27. Eredmények (2)

  28. Javítási lehetőségek • A magyarázóképesség javítására: • Új változók keresése (pl. a település típusa, foglalkoztatás

  29. Eredmények

  30. Korreláció-elemzés • Függ-e egymástól két változó? • A változók normál eloszlásúak • Korrelációs együttható, vagy determinációs tényező (r): Két adatsor (minta) közötti lineáris összefüggés erősségét mérő szám.

  31. Korreláció-elemzés • Pearson féle korrelációs együttható: r • -1<=r<=1 • Nincs kapcsolat, ha értéke nulla, vagy ahhoz közeli. • Az összefüggés jellemzésére az r számértéke alapján különböző fokozatokat állítottak fel. r=±1 1>|r|≥0,75 0,75>|r|≥0,5 0,5>|r|≥0,25 0,25>|r|≥0 r=0 Függvénykapcsolat Nagyon szoros kapcs. Szoros kapcsolat Laza kapcsolat Nagyon laza kapcs. Nincs kapcsolat

  32. Köszönöm a megtisztelő figyelmet!

  33. 6.

More Related