100 likes | 206 Views
Vortex phase above the melting line in heavy-ion irradiated Bi 2 Sr 2 CaCu 2 O 8. Kees van der Beek Laboratoire des Solides Irradiés, Ecole Polytechnique, Palaiseau. • Sylvain Colson, Panayotis Spathis, Mikhail Indenbom, Irina Abalosheva, Marcin Konczykowski
E N D
Vortex phase above the melting line in heavy-ion irradiatedBi2Sr2CaCu2O8 Kees van der Beek Laboratoire des Solides Irradiés, Ecole Polytechnique, Palaiseau • Sylvain Colson, Panayotis Spathis, Mikhail Indenbom, Irina Abalosheva, Marcin Konczykowski Laboratoire des Solides Irradiés, Ecole Polytechnique, Palaiseau, France • Ming Li, Peter Kes Kamerlingh Onnes Laboratorium, Leiden, The Netherlands • Marat Gaifullin, Yuji Matsuda Institute of Solid State Physics, The University of Tokyo, Japan • Satyajit Banerjee, Yuri Myasoedov, Eli Zeldov Weizmann Institut e of Science, Rehovot, Israel • Mariela Menghini, Yanina Fasano, Paco de la Cruz Laboratorio de Bajas Temperaturas, Centro Atomico Bariloche, Argentina
1st Order Transition Vortex matter phase diagram in BSCCO Vortex liquid Vortex solid BFOT = 0.5 (F0/g2s2) (e0s / kBT ) rw = (un+1-un)2 1/2 = ca0 L.I. Glazman & A.E. Koshelev, Phys. Rev. B 43 , 2835 (1991)
First Order Transition 0.55 ≤ a ≤ 0.95 2F0 pB rw2 = [1 - cos (fn-fn+1) ] Josephson Plasma Resonance rw (nm) wpl2 (B,T) = wpl2(0,T)cos(fn-fn+1) T / Tc Brandt and Sonin, PRB 66, 064505 (2002). Koshelev, Maley, Bulaevskii, Physica C 341-348, 1503 (2000). If compressional, shear, or "collective" tilt modes dominate, then un 21/2 , rw decrease as function of B the vortex line tension limits fluctuations
•rw(T,B)always behaves as in the "single vortex limit",i.e. as if the line tension (Josephson) term determines everything A.E. Koshelev, L.N. Bulaevskii, Physica C 341-348 (2000)•The temperature dependence of rw(T,B) in agreement with thermal softening of the line tension ( kmax = p/rw not p/x )R. Goldin, B. Horowitz, PRB 58, 9524 (1999) A.E. Koshelev, V.M. Vinokur, PRB 57, 8026 (1998) • Up to the 1st order transition - at the FOT displacements of order a0 cannot be screened by Josephson coupling • "Melting" does not involve c66 vortexlatticepositional order not required• Robust with respect to pinning (See Satyajit Banerjee session III T7)
1st order transition BFOT = 0.5 (F0/g2s2) (e0s/ kBT ) Vortex matter phase diagram in heavy-ion irradiated BSCCO Vortex liquid Vortex solid 2nd order transition (un+1-un)2 1/2 = ca0 L.I. Glazman and A.E. Koshelev, Phys. Rev. B 43 , 2835 (1991)
Vortex fluctuations in heavy-ion irr. BSCCO - low B T / Tc Quantitavely the same behaviour as in unirradiated crystals S. Colson et al,. Phys. Rev. B 69, R180510(2004)
Vortex fluctuations in heavy-ion irr. BSCCO - high B T / Tc • Low T : cosf > value before irradiation but < 1 columnar defects cannot align vortex lines as well as in the vortex solid • High T : IRL corresponds to loss of phase coherence cf. Doyle et al. PRL 77, 1155 (1996).
Irreversibility ("Bose-glass") line Loss of phase coherence cf. Doyle et al. PRL 77, 1155 (1996). Does not depend on defect density Does not depend on pinning potential - as shown by C60 irradiation, tracks of 20 nm diameter 4. Vortices still pinned in liquid (Monte Verita 1997) Delocalization line 5. Exponential line, Power-law IV’s topological transition Feigel’man Geshkenbein Larkin 1990
Conclusions • Josephson Plasma Resonance probes c-axis vortex pancake alignment • Columnar defects enhance IRL only at "low enough" T • High T : vortex fluctuations / FOT as in unirradiated BSCCO T-scale determined by e0s B-scale determined byg (Koshelev PRB 1997) • High B : pancakes never aligned as well as in "vortex solid" Ghost of FOT • IRL : drop in phase correlations Position determined mainly bye0s (in plane properties) • High density of columnsredistributed pancake vortices
• Recap on 1st order transition of the vortex ensemble in Bi2Sr2CaCu2O8+d • Columnar defects created by heavy-ion irradiation • Phase diagram as function of doping • Conclusion