1 / 28

NANOPHYSIQUE INTRODUCTION PHYSIQUE AUX NANOSCIENCES

NANOPHYSIQUE INTRODUCTION PHYSIQUE AUX NANOSCIENCES. 6. MOTEURS MOLECULAIRES. Pierre GASPARD. 2011-2012. BIOMOLECULES. ADN: Acide Désoxyribo-Nucléique (stockage d’information). -ACATGTAATTCATTTACACGC- -GTACATTAAGTAAATGTGCGT- A: adénine T: thymine C: cytosine G: guanine

baylee
Download Presentation

NANOPHYSIQUE INTRODUCTION PHYSIQUE AUX NANOSCIENCES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NANOPHYSIQUEINTRODUCTION PHYSIQUE AUX NANOSCIENCES 6. MOTEURS MOLECULAIRES Pierre GASPARD 2011-2012

  2. BIOMOLECULES ADN: Acide Désoxyribo-Nucléique (stockage d’information) -ACATGTAATTCATTTACACGC- -GTACATTAAGTAAATGTGCGT- A: adénine T: thymine C: cytosine G: guanine 1 paire de bases = 2 bits d’information ~ 64 atomes adénosine monophosphate adénosine triphosphate (stockage d’énergie) Watson & Crick, Franklin, Wilkins (1953)

  3. En plongée dans la cellule L’évolution biologique a transformé de simples vésicules en cellules munies de nombreuses organites. taille ~10-30 mm Chr. de Duve, Une visite guidée de la cellule vivante (De Boeck Université, Bruxelles, 1987).

  4. Dans une mitochondrie Centrale énergétique de la cellule: production de l’ATP (carburant cellulaire) membrane double, membrane interne avec: (1) pompes à protons (2) ATP synthases taille ~ 2-3 mm Chr. de Duve, Une visite guidée de la cellule vivante (De Boeck Université, Bruxelles, 1987).

  5. Moteur moléculaire FoF1-ATPase protéine: polymère d’acides aminés ATP synthase mitochondrie: centrale énergétique de la cellule F : turbine à protons F : génératrice d’ATP o 1 F : moteur à ATP F : pompe à protons 1 o

  6. Moteur moléculaire F1-ATPase combustible: adénosine triphosphate (ATP) actine -18 puissance = 10 Watt Moteur F 1 0,5 tour / sec 1,3 tour / sec 5 mm H. Noji, R. Yasuda, M. Yoshida, & K. Kinosita Jr., Nature 386 (1997) 299

  7. Moteur moléculaire F1-ATPase F : moteur à ATP H. Wang & G. Oster, Nature 396 (1998) 279 1 -18 puissance = 10 W (Watt) 0,5 tour / sec 1,3 tour / sec 5 mm H. Noji, R. Yasuda, M. Yoshida, & K. Kinosita Jr., Nature 386 (1997) 299

  8. 6 Locomotive à vapeur puissance = 5 10 W (Watt)

  9. Power plant of the cell: synthesis of ATP FoF1-ATPase INSIDE MITOCHONDRIA size ~ 2-3 mm Internal membrane with: Fo = proton turbine F1 = ATP synthase (23500 atoms) H. Wang & G. Oster, Nature 396 (1998) 279 Chr. de Duve, Une visite guidée de la cellule vivante (De Boeck Université, Bruxelles, 1987).

  10. ACTIN-MYOSIN MOLECULAR MOTOR myosin II: protein of about 6700 atoms cross-bridge mechanism

  11. Linear motors: • actin-myosin II (muscles) • kinesin-microtubule (anterograde transport cargo) • dynein-microtubule (retrograde transport cargo) Rotary motors: • F1-ATPase + actin filament or bead Powered by chemical energy: ATP hydrolysis ATP ADP + Pi difference of free energy: DG0 = -30.5 kJ/mole = -7.3 kcal/mole = -50 pN nm = -12.5kBT nonequilibrium thermodynamics kBT = 4 pN nm = 0.026 eV (300 K) importance of the chirality of the molecular structure for the directionality of motion under specific nonequilibrium conditions ATP ROTARY AND LINEAR MOLECULAR MOTORS

  12. F1-ATPase NANOMOTOR H. Noji, R. Yasuda, M. Yoshida, & K. Kinosita Jr., Nature 386 (1997) 299 R. Yasuda, H. Noji, M. Yoshida, K. Kinosita Jr. & H. Itoh, Nature 410 (2001) 898 F1 = (ab)3g chemical fuel of F1 : ATP cycle: power = 10-18 Watt chiral molecules

  13. DISCRETE-STATE STOCHASTIC PROCESSES FOR MOLECULAR MOTORS Markovian jump process between the discrete states s : master equation A. B. Kolomeisky & M. E. Fisher, Ann. Rev. Phys. Chem. 58 (2007) 675 R. Lipowsky & S. Liepelt, J. Stat. Phys. 130 (2008) 39 A. Garai, D. Chowdhury & M. P. Betterton, Phys. Rev. E 77 (2008) 061910 Fluctuation theorems: U. Seifert, EPL 70 (2005) 36 (rotary motor, 3 states) D. Andrieux & P. Gaspard, Phys. Rev. E 74 (2006) 011906 (rotary motor, F1-ATPase, 6 states) D. Lacoste, A. W. C. Lau & K. Mallick, Phys. Rev. E 78 (2008) 011915 (linear motor)

  14. F. Jülicher, A. Adjari & J. Prost, Rev. Mod. Phys. 69 (1997) 1269 CONTINUOUS STOCHASTIC PROCESSES coupled Fokker-Planck equations for the probability densities: Mechanical part: probability currents: diffusion coefficient: friction coefficient Chemical part: transition rates of the reactions Arrhenius’ law of chemical kinetics potentials for the wells: Ui(q) potentials for the transition states: Ui*(q) • P. Gaspard & E. Gerritsma, J. Theor. Biol. 247 (2007) 672

  15. FREE-ENTHALPY POTENTIALS Potential wells obtained by inverting the experimental probability distributions: R. Yasuda, H. Noji, M. Yoshida, K. Kinosita Jr. & H. Itoh, Nature 410 (2001) 898 potentials for the transition states Ui*(q) potentials for the wells Ui(q) • three-fold rotation symmetry: group C3 • absence of parity symmetry (chirality) • P. Gaspard & E. Gerritsma, J. Theor. Biol. 247 (2007) 672

  16. RANDOM TRAJECTORIESOF THEF1 -ATPase MOTOR Random trajectories simulated by a model: P. Gaspard & E. Gerritsma, J. Theor. Biol. 247 (2007) 672 Random trajectories observed in experiments R. Yasuda, H. Noji, M. Yoshida, K. Kinosita Jr. & H. Itoh, Nature 410 (2001) 898 Michaelis-Menten kinetics

  17. Crossover from reaction-limited regime to friction-limited regime F1-ATPase ROTATION RATE VERSUS FRICTION P. Gaspard & E. Gerritsma, J. Theor. Biol. 247 (2007) 672

  18. F1-ATPase UNDER AN EXTERNAL TORQUE (e.g. from Fo) stall torque ATP synthesis ATP consumption H. Itoh , A. Takahashi, K. Adachi, H. Noji, R. Yasuda, M. Yoshida, K. Kinosita Jr., Mechanically driven ATP synthesis by F1-ATPase, Nature 427 (2004) 465

  19. EFFICIENCIES OF F1-ATPase F1-ATPase under an external torque (e.g. from Fo) number of ATP synthesized or consumed per revolution: tight chemomechanical coupling for |t| < 27 pN nm chemical efficiency in ATP synthesis: mechanical efficiency in energy transduction: F. Jülicher, A. Adjari & J. Prost, Rev. Mod. Phys. 69 (1997) 1269

  20. TIGHT/LOOSE CHEMOMECHANICAL COUPLING tight coupling condition: entropy production: chemomechanical affinity: shift of effective equilibrium by the external torque E. Gerritsma & P. Gaspard, unpublished

  21. DISCRETE-STATE MODEL FOR THE F1-ATPase MOTOR 1 The angle jump at each reactive event: the tight coupling condition is always fulfilled. Markovian jump process between the discrete states s : transition rates: dependence on friction z and torque t : fitted to the continuous model E. Gerritsma & P. Gaspard, unpublished

  22. DISCRETE-STATE MODEL FOR THE F1-ATPase MOTOR 2 master equation : stationary solution: mean rotation rate (rev/sec): D. Andrieux & P. Gaspard, Phys. Rev. E 74 (2006) 011906 E. Gerritsma & P. Gaspard, unpublished

  23. F1-ATPase ROTATION RATE VERSUS AFFINITY dimensionless affinity or thermodynamic force: mean rotation rate: highly nonlinear dependence on A linear regime around equilibrium: nonlinear regime far from equilibrium: equilibrium: A = 1: 3.1 days/rev ! The F1 molecular motor typically works in a highly nonlinear regime far from equilibrium. E. Gerritsma & P. Gaspard, unpublished

  24. FULL COUNTING STATISTICS & FLUCTUATION THEOREM discrete-state model: generating function of the statistical cumulants of the number Nt of reactive events during the time t : 1st cumulant: mean rate A. B. Kolomeisky & M. E. Fisher, Ann. Rev. Phys. Chem. 58 (2007) 675 2nd cumulant: diffusivity fluctuation theorem: chemomechanical affinity: D. Andrieux & P. Gaspard, Phys. Rev. E 74 (2006) 011906 E. Gerritsma & P. Gaspard, unpublished

  25. FLUCTUATION THEOREM FOR THE F1-ATPase MOTOR:NO EXTERNAL TORQUE affinity or thermodynamic force: Fluctuation theorem for the number St of substeps: P(St = -s) exp(sA/2) very long time interval: t = 104 s D. Andrieux & P. Gaspard, Phys. Rev. E 74 (2006) 011906

  26. FLUCTUATION THEOREM FOR THE F1-ATPase MOTOR:WITH EXTERNAL TORQUE chemomechanical affinity: Fluctuation theorem for the number St of substeps: shorter time interval: xP(St = -s) exp(sA/2) oP(St = s) E. Gerritsma & P. Gaspard, unpublished

  27. FLUCTUATION THEOREM & TIGHT CHEMOMECHANICAL COUPLING Loose coupling: independent mechanical & chemical fluctuating currents D. Andrieux & P. Gaspard, J. Chem. Phys. 121 (2004) 6167 D. Andrieux & P. Gaspard, Phys. Rev. E 74 (2006) 011906 D. Lacoste et al., Phys. Rev. E 80 (2009) 021923 E. Gerritsma & P. Gaspard, unpublished Tight coupling: chemomechanical affinity: U. Seifert, EPL 70 (2005) 36 (rotary motor, 3 states) D. Andrieux & P. Gaspard, Phys. Rev. E 74 (2006) 011906 (rotary motor, F1-ATPase, 6 states) D. Lacoste, A. W. C. Lau & K. Mallick, Phys. Rev. E 78 (2008) 011915 (linear motors)

  28. OUT-OF-EQUILIBRIUM DIRECTIONALITYIN THE F1-ATPase NANOMOTOR 3 2 1 at equilibrium: detailed balance between …212132131223132… forward and backward rotations, (random) zero currents out of equilibrium: directionality of motion: …123123123123123… non-zero currents, (more regular) dynamical order

More Related