1 / 24

Overview of the experiment Physics Motivation JHF facility and n beam Physics Sensitivity

日本物理学会・新潟大学 2000 年 9 月 23 日 宇宙線、素粒子論、素粒子実験 合同シンポジウム. JHF ニュートリノ実験. 中家 剛 (京大理). Overview of the experiment Physics Motivation JHF facility and n beam Physics Sensitivity Additional Options Summary and Conclusion. 1. Overview of the experiment. ~1GeV n beam. Kamioka.

bazyli
Download Presentation

Overview of the experiment Physics Motivation JHF facility and n beam Physics Sensitivity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 日本物理学会・新潟大学 2000年9月23日 宇宙線、素粒子論、素粒子実験 合同シンポジウム JHFニュートリノ実験 中家 剛 (京大理) Overview of the experiment Physics Motivation JHF facility and n beam Physics Sensitivity Additional Options Summary and Conclusion

  2. 1. Overview of the experiment ~1GeV n beam Kamioka Super-K: 50 kton Water Cherenkov JAERI (Tokaimura) 1 MW 50 GeV PS ( conventional n beam) • Precision measurement of n oscillation parameters by nm→ nx(sin22q23、Dm232). • Discovery of nm→ ne(sin22q13) • Confirmation of nm→ ntwith p0 in Neutral Current (NC).

  3. 1km(2700mwe) 3km 2km Mozumi Atotsu Super Kamiokande (far detector) 41.4m Outer detector 1867 of 8” PMT Ikeno-yama Kamioka, Gifu 50kton stainless steel tank 39.3m Inner detector 11146 of 20” PMT thanks to Kamiokande/Super-Kamiokande to make a neutrino physics so exciting.

  4. JHF Neutrino Working Group ICRR/Tokyo-KEK-Kobe-Kyoto-Tohoku-TRIUMF Y.Itow, Y.Obayashi, Y.Totsuka (ICRR/Tokyo) Y.Hayato, T.Kobayashi, K.Nakamura, M.Sakuda(KEK) T.Hara (Kobe) T.Nakaya, K.Nishikawa (Kyoto) T.Hasegawa, K.Ishihara, A.Suzuki (Tohoku) A.Konaka (TRIUMF) 15,5

  5. L=Σ(√M/v)yFy (Higgs Interaction) 2 2.Physics Motivation • Study n oscillation phenomena with a great precision. well known Not well known lepton quark MNSMatrix (Maki-Nakagawa-Sakata) KM Matrix (Kobayashi-Maskawa) Within SM: mass and mixing angles are free parameters Beyond SM(or GUT) : A prediction and a relation

  6. U= • MNS Matrix sij=sinqij、cij=cosqij Dmij2=Dmi2-Dmj2 Dm122 、Dm232 、 q12、 q23、 q13、 d solar n and reactor n ○ ○ ○ (size) ○ ○ LBL and atm. n (JHF-n) Future LBL (n factory or JHF-n -II) ○ (sign) ○

  7. Dm232 andq23 measurement P(nm→nm)=1 - cos4q13sin22q23sin2(1.27 Dm232 L/E) ~1 sin22q • Dm232 • Mass is a basic parameter. • If m3>>m2, the measurement is the mass itself which indicates a scale at high energy. <= GUT • q23 • q23 =p/4 or NOT (several predictions from GUT) • sin22q = 0.93 (Yanagida and Fukugita) = 0.81-0.96 (J. Pati, hep-ph/0005095) P(nm→ nm) Dm2 En (GeV)

  8. q13 measurement P(nm→ne)=sin22q13sin2q23sin2(1.27 Dm232 L/E) • A mixing angle between 1st and 3rd generation in MNS. • q13may be just below the CHOOZ limit, and nm→ne is waiting to be discovered. sin22q13= 0.014 (SU(5)-GUT, hep-ph/0007254) = 0.01-0.09 if LMA (PRL84, 3535 (2000)) ~ 0 • A discovery of nm→ne can open the new window to study CP violation in this mode. may be a source of baryogenesis in the universe.

  9. Non standard n oscillation hep-ph/0002199 • Large Extra Dimension • A sterile neutrino (LSND result? 3 or 4 n’s) • non standard CP violation of nm→nt . • (see Yasuda-san’s talk at PA08d (neutrino), ICHEP 2000) • Any other unexpected phenomena standard P(nm→ nx) L/E

  10. N 50GeV PS 3GeV PS Neutrino Beam Line 600MeV Linac FD To SK 3. JHF facility and n beam JAERI@Tokai-mura (60km N.E. of KEK) Construction 2001~2006 1021POT(130day)≡ “1 year”

  11. n beam at JHF • Principle • Intense • Beam energy is tuned to be at the oscillation maximum. • High sensitivity • Less background • ~1 GeV beam energy for Quasi-elastic interaction. Dm2= 2~5x10-3eV2 En=0.5~1.2GeV Wide Band Beam +-200MeV En(reconstruct) – En (True) (MeV)

  12. 3 beam configurations. • Wide Band beam (WBB) • High n flux • Broad n energy spectrum • Narrow Band Beam (NBB) • Tuned n energy (Flexible) • Off Axis Beam (OAB) • Tuned n energy (Fixed)

  13. Wide Band Beam 2 horns (almost same design as K2K) ~4200 nm int./22.5kt/yr ne:0.8% yet to be optimized

  14. Target : Cu 1cmf x 30cm Horn : 250kA Decay Pipe : 155m x 1.5mf Dipole : 50cm(V)x70cm(H)x2m(L) 0.58T (10deg@2GeV/c) Gcalor Narrow Band Beam ~830 nm int./22.5kt/yr ne:0.8%(0.3% @ peak) yet to be optimized

  15. Far Det. q Decay Pipe Horns Target Off Axis Beam (another NBB option) (ref.: BNL-E889 Proposal) WBB w/ intentionally misaligned beam line from det. axis 2° ~2200 int./22.5kt/yr ne: 0.8% (0.2% @ peak)

  16. 4. Physics Sensitivity • First 1 year WBB  pin down Dm232 to ±10% level • 5year NBB or OAB  precise measurement of q23 and q13. Sensitivity (goal): dsin22q23 ~ 0.01 sin22q13 ~ 5×10-3 (90% CL) dDm232~ 1.5×10-4eV2 at (sin22q=1.0, Dm2=3.2×10-3eV2)

  17. nm disappearance 1ring FC m-like Total Inelastic Reconstructed En (MeV) Ratio after BG subtraction. Fit with 1-sin22q・sin2(1.27Dm2L/E)

  18. 1year precision WBB NBB d(sin22q)~0.01 in 5 years

  19. Preliminary 5 2 ne appearance Background rejection against NC p0 is improved. sin22qme=0.05 WBB Dm2 CHOOZ ×10 improvement NBB OAB 3 5 sin22qme ×10-3 Dashed lines: MINOS Ph2le, Ph2me, Ph2he from right (A.Para, hep-ph/0005012)

  20. nt confirmation • NC p0 interaction • n + N →n + N + p0 • nm→ ne CC + NC(~0.5CC) ~0 (sin22qme~0) nm CC + NC(~0.5CC) ~0 (maximum oscillation)nt NC #p0 is sensitive to nt flux. Limit on the existence of sterile n.

  21. JHF-n v.s. other LBL experiment • MINOS at FNAL • similar statistics for oscillated n. • no direct t observation. • OPERA/ICANOE at CERN and Gran Sasso • less statistics for oscillated n. • Direct t observation, but t→enn is possible background to search for nm→ ne • JHF-n • will have the highest sensitivity to Dm232, q23 , q13 thanks to the gigantic SK detector and the high intensity PS.

  22. Additional Options • JHF with 1 Mton Water Cherenkov detector (for proton decay) • If nm→ ne is discovered in JHF-n, the study of CP violation becomes realistic. • #(nm→ ne )~O(100) →Asymmetry ~ 10% . →sensitivity to d ~ 10 degree. • Very LBL experiment between Japan and China (or Korea). • With a 100kt detector and a new beam line, a matter effect is measurable in nm→ ne mode. → sign of Dm232

  23. Summary and Conclusion • Neutrino Oscillation Parameters can be measured with a great precision. dsin22q23 ~ 0.01 sin22q13 ~ 5×10-3 (90% CL) dDm232~ 1.5×10-4eV2 at (sin22q=1.0, Dm2=3.2×10-3eV2) • These sensitivities are much better than other LBL program in the world.

  24. Summary and Conclusion (continue) • nm→ ne will be discovered. • GUT will be established (also with a proton decay). • CP violation in lepton sector will be seen. • Baryon number asymmetry in the universe may be understood from the CP violation in lepton sector. • Large Extra dimension may be discovered. • Or …… What do you expect?? • We need your collaboration, your cooperation and your talent. Let’s join JHF-neutrino.

More Related