410 likes | 424 Views
Explore innovative methods to generate short electron bunches, produce quality beams, laser techniques, and applications. Learn about wakefield accelerators and perspectives in the field.
E N D
Ultrafast Laser -Driven Wakefield Accelerators Oleg Korovyanko 01/12/2009SLAC AARD seminar
Outline Part 1: Wakefield accelerators: techniques to generate short e bunches Part 2: Production of quality electron beams, characterization and applications Part 3: Relevant laser techniques Part 4: Conclusion and perspectives
100 mm Plasma cavity RF vs Plasma E-field max~ 10 MeV /m E-field max~ 10 GeV/m Courtesy of V. Malka 1 m RF cavity DWA Diel. surface field breaks down @~ 10 GeV/m
> 1.6 W @ 400 nm SHG2 SHG1 FS D3-4 IR4 D1 D2 IR1 WP SHGxtal THGxtal > 900 mW @ 266nm IR2-3 Prepared by DSF2059, 031307, RLS
ANL AWA1.3 GHz, TSA 50 • Built as DWA: witness, drive bunches • Two 248nm pulses go to photocathode of RF gun, one or several drive bunches inter-pulse separation controlled w/ mechanical delay stage 23 cm, ~770ps, or 10.5Lo, Lo=22mm • A new UV stretcher utilizes thick BBO crystals in series • Laser mode at photocathode: adjustable iris at 1 m from photocathode
Monoenergetic Beams from Literature Intensity tL/Tp Energy dE/E Charge Ne [pC] Article Name Lab 3 /cm x10 W/cm ] 18 2 x1018 [MeV] [%] Mangles Nature (04) RAL 73 6 22 20 2,5 1,6 Geddes Nature (04) L'OASIS 86 2 320 19 11 2,2 Faure Nature (04) LOA 170 25 500 6 3 0,7 Hidding PRL (2006) JETI 47 9 0,32 40 50 4,6 Hsieh PRL (2006) IAMS 55 336 40 2,6 Hosokai PRE (2006) U. Tokyo 11,5 10 10 80 22 3,0 Miura APL (2005) AIST 7 20 432E-6 130 5 5,1 Hafz PRE (2006) KERI 4,3 93 200 28 1 33,4 Mori ArXiv (06) JAERI 20 24 0,8 50 0,9 4,5 Mangles PRL (2006) Lund LC 150 20 20 5 1,4 State-of-art gradient 27 GeV/m, SLAC, 27 GeV drive, Nature’2007
Towards longer interaction length Diffraction length L~pr2/l0Rayleigh Dephasing length ~ a0 lp3/ l02 Pump depletion length a0 >>1 • Expanding Bubble Injection regime Degrades emittance due to high transverse field – control trapping Pre-formed channel injection : plasma “fiber” Optical injection by colliding pulse Capillary discharge channel
250 mJ, 30 fs ffwhm=30 µm I ~ 4×1017 W/cm2 a1=0.4 700 mJ, 30 fs, ffwhm=16 µm I ~ 3×1018 W/cm2 a0=1.2 LOA Experimental set-up electron spectrometer to shadowgraphy diagnostic Probe beam LANEX Gas jet B Field Pump beam Injection beam
- = × 18 3 n 1 . 5 10 cm m l = m 0 . 8 = m m p w 20 0 t = 30 fs f(E) (a.u.) = P 200 TW After 5 Zr / 7.5 mm = a 4 0 2.5 2 1.5 1 0.5 0 800 1200 1600 2000 Energy (MeV) Laser plasma injector : GeV electron beams Courtesy of UCLA& Golp groups
Monoenergetic bunch comes from colliding pulses: polarization test Parallel polarization Crossed polarization
Cubic dispersion (gratings etc.) No significance Quadratic dispersion (glass etc.) Spectral Phase
Water radiolysis D.A. Oulianov et al JAPS’ (2007).
How to control injection? -inject electron beam from LINAC (SLAC, Nature’07) ANL LINAC Chuck Jonah, 1988 21 MeV; 7 ps; 4nC; plasma density 4-7x1010 cm-3 -use laser-based ionization DWA : “chirped” bunches, break down due to CCR multiphoton ionization • *control of laser PW, wavelength • How to control acceleration? -plasma density -channel guiding (LBNL) -colliding pulse (LOA)
Acousto-optic shaping Dazzler - from Fastlite No need for zero dispersion stretcher Controls different dispersion orders
Injection assisted by laser ionization • Laser-assisted ionization of atoms or ions • Two types: multiphoton and Frank-Keldysh tunneling • 13.6 eV vs 1.5 eV • DFG: Reducing laser frequency increases ponderomotive potential ~w-2 • HE TOPAS ~100 mJ @ l~9 mm
Laser techniques • Multi-bunch generation w/ DWA • Pulse shaping • DFG due to detuned from 800 synchronized Regen pulses • Atto-second science: CEP
Applications,Conclusions and Perspectives DW should be 7.2 GeV with laser parameters (100TW, a0 ~3, Li~3.8cm) • THz source CCR • Hard X-ray fs source • X-ray free electron lasers • Radiology, biophysics around water window • Early stage of proton acceleration • 1TeV is a goal for HE physics is too far 32 kJ of laser energy (100 lasers of 300J) • Optical Parametric CPA
Efficiency • Emittance • Charge • Atto-second -ESASE
Background. Parametric interaction wp = ws + wi phase matching conditions in a uniaxial x-stal such as BBO kp = ks + ki Non-collinear Each photon in idler beam generated together with a photon in signal beam S P I II P
PW Spectral Phase Cubic dispersion (gratings etc.) No significance Quadratic dispersion (glass etc.)
FROGs • Frequency Resolved Optical Gating (Kane and Trebino’ Opt Lett’ 1993) • Suitable for single-shot detection • Not an interferometric technique, just 2D spectrogram of cross-correlation function • Not easy to reconstruct E(w,t): iterative algorithm, t-direction ambiguity • Slight modification (Masalov et al, JOSA 2001) makes use of spatial interferometry wavelength slit 2nd harmonic Doubling x-stal t
SPIDER c2 2p/t • Spectral phase interferometry for direct electric-field reconstruction (Iaconis and Walmsley, Opt Lett. ‘ 1998) • Spectral interferogram of two frequency-shifted up-converted pulses; no reference needed • Non-iterative reconstruction algorithm; 1D data set t~2 ps t w