440 likes | 454 Views
of the Neutrino Mass. Toward the Origin. Hiroaki SUGIYAMA. (Univ. of Toyama). Contents. Introduction Typical models of neutrino mass Classification of models Test of groups of models Summary. Based on “S. Kanemura, HS, PLB 753 , 161 (2016)”.
E N D
of the Neutrino Mass Toward the Origin Hiroaki SUGIYAMA (Univ. of Toyama) Contents • Introduction • Typical models of neutrino mass • Classification of models • Test of groups of models • Summary Based on “S. Kanemura, HS, PLB753, 161 (2016)” See also “S. Kanemura, K. Sakurai, HS, PLB758, 465 (2016)” PLB763, 352 (2016)” “M. Aoki, S. Kanemura, K. Sakurai, HS,
Introduction Gauge boson masses, charged fermion masses We have known how they are generated. Coupling constant Particle mass [GeV] ATLAS collab., EPJC76, 6 (2016)
Neutrino mass Massless The standard model (SM) Neutrino oscillation Non-zero masses Two possible neutrino masses Dirac mass : (introduce ) () Unnaturally small (Lepton # violation) Majorana mass : : Specific to neutrinos We take this in this talk
Contents • Introduction • Typical models of neutrino mass • Classification of models • Test of groups of models • Summary
Typical Models of Neutrino Mass Seesaw mechanism No extension of Higgs sector (lepton # violation) P. Minkowski, PLB67, 421 (1977) T. Yanagida, Conf. Proc. C 7902131, 95 (1979) M. Gell-Mann, P. Ramond and R. Slansky, Conf. Proc.C 790927, 315 (1979) Far from experimental reach (A testable scenario Asaka-san’s talk)
Higgs triplet model Extended Higgs sector : W. Konetschny and W. Kumer, PLB70, 433 (1977) M. Magg and C. Wetterich, PLB94, 61 (1980) T.P. Cheng and L.F. Li, PRD22, 2860 (1980) J. Schechter and J.W.F. Valle, PRD22, 2227 (1980) different from
Zee model : Radiative neutrino mass (1-loop) : : No FCNC (Zee-Wolfenstein model) Anti-symmetric Loop-suppression A. Zee, PLB93, 389 (1980) L. Wolfenstein, NPB175, 93 (1980) Not necessarily very large Excluded by oscillation data e.g., X.G. He, EPJC34, 371 (2004)
Zee-Babu model : Radiative neutrino mass (2-loop) : : A. Zee, NPB264, 99 (1986) Anti-symmetric K.S. Babu, PLB203, 132 (1988) Symmetric 2-loop-suppression
Ma model : 1-loop mass & dark matter Unbroken symmetry Dark matter (DM) candidate -odd particles : : Singlet fermion E. Ma, PRD73, 077301 (2006)
Higher-loop models with DM Krauss-Nasri-Trodden model M.L. Krauss, S. Nasri and M. Trodden, PRD67, 085002 (2003) Aoki-Kanemura-Seto model M. Aoki, S. Kanemura and O. Seto, PRL102, 051805 (2009) Gustafsson-No-Rivera model M. Gustafsson, J.M. No, and M.A. Rivera, PRL110, 21802 (2013)
Higher-loop models with DM Krauss-Nasri-Trodden model M.L. Krauss, S. Nasri and M. Trodden, PRD67, 085002 (2003) Many models of Which is the true one ? Aoki-Kanemura-Seto model M. Aoki, S. Kanemura and O. Seto, PRL102, 051805 (2009) Gustafsson-No-Rivera model M. Gustafsson, J.M. No, and M.A. Rivera, PRL110, 21802 (2013)
Contents • Introduction • Typical models of neutrino mass • Classification of models • Test of groups of models • Summary
Classification of models of neutrino masses There are (too) many models. Model-Y Model-A Model-C Model-B Model-E Model-F Model-Z Classification is desired. Model-A Model-B Model-F Model-Y Model-C Model-E Model-Z Missing models ? Model-A Model-B Model-F Model-Y Model-C Model-E Model-Z Model-D Efficient tests ? N Signal-A ? N Y Signal-B ? Y
How to classify ? Properties of neutrino mass matrix New particle masses Overall scale Topology of diagram (tree, one-loop, …) Sizes of coupling constants (Yukawa, potential) Matrix structure Products of Yukawa matrices Structures of Yukawa (sym., antisym., diag.) Only Yukawa. Not detail of models Classification by concentrating on Yukawa int. with leptons
Setup Neutrinos : Majorana fermions (lepton number violation) cf. Study on Dirac neutrino case S. Kanemura, K. Sakurai, HS, PLB758, 465 New scalars : Required to be introduced Seesaw No new scalars cf. Difficult to be tested Testable scenario: Asaka-san’s talk No lepton flavor Flavor symmetry Sleptons for SUSY, cf. No color cf. Scalar leptoquarks No flavor changing neutral current at tree level New fermions : Majorana fermion Gauge-singlet odd
Scalars with Leptonic Yukawa Int. Scalar Yukawa Note Anti-sym. Arbitrary odd Symmetric Diagonal Fixed odd Arbitrary Symmetric
Classification according to interactions of leptons Models (full Lagrangian) - odd Red lines :
Classification according to interactions of leptons Models (full Lagrangian) - odd Red lines : Concentrating on Yukawa int. Concentrating Yukawa int. on between two leptons Concentrating on interactions Concentrating on interactions between two leptons (effective)
Products of New Yukawa Matrices for For Majorana neutrino masses 3 groups I II III I II III 8 combinations S. Kanemura, HS, PLB753, 161 (2016)
Three groups for Majorana mass : Antisym. Yukawa for I) : Diagonal Yukawa ( ) for II) : Sym. matrix III)
Contents • Introduction • Typical models of neutrino mass • Classification of models • Test of groups of models • Summary
I) II) III) - [scalars] : - : - [scalars] - causes Stringent constraint Naively, no signal of (Expected sensitivity : ) Belle-II collab., arXiv:1011.0352 Signal of or II) III) or Prediction for flavor structure of I) has no prediction
II) III) I) N N I N N I : Largest (Normal) N : (Inverted) I : : can be observed can be determined by osc.
Electron-philic II) III) I) N N I N N I : Largest (Normal) N : (Inverted) I : : can be observed can be determined by osc.
No (e.g. ) ( Half-life) II) III) I) N N I N N I : Largest (Normal) N : (Inverted) I : : can be observed can be determined by osc.
II) III) I) N N I N N I : Largest (Normal) N : (Inverted) I : : can be observed can be determined by osc.
If observed II) III) I) N N I N N I : Largest (Normal) N : (Inverted) I : : can be observed can be determined by osc.
If is observed No (e.g. ) If observed II) III) I) N N N I N N I : Largest (Normal) N : (Inverted) I : : can be observed can be determined by osc.
Summary (Simple) Models for the Majorana neutrino mass can be classified into 8 combinations of Yukawa matrices and further (by keeping only leptons) into 3 groups These groups can be tested by flavor structure for Origin of neutrino mass We may be getting closer ! HPNP2017 HPNP2017 HPNP2015 HPNP2013
Leptonic Decays of New Scalar If are observed (for ) (for ) See e.g., K.S. Babu, C. Macesanu, PRD67, 073010 (2003) “model indep.”
If are observed “model dep.” Higgs triplet model ( ) (for ) (for ) See e.g., P. Fileviez Perez et al., PRD78, 015018 (2008) Ma model ( ) Universal
If are observed Zee-Babu model ( ) (for ) (for ) See e.g., J. Herrero-Garcia et al., NPB885, 542 (2014) Cheng-Li model ( ) Gustafsson-No-Rivera model No
If are observed Higgs triplet model ( ) A.G. Akeroyd, M. Aoki, HS, PRD77, 075010 (2008)
Oscillation Data T2K : K. Abe et al., PRL112, 181801 (2014) R.P. An et al., PRL112, 061801 (2014) Daya Bay : R.P. An et al., PRL115, 111802 (2015) SNO : B. Aharmim et al., PRC88, 025501 (2013)
Lepton Flavor Violation - - depends on detail of models : Lepton mixing matrix : Neutrino masses (for ) (for ) See e.g., K.S. Babu and C. Macesanu, PRD67, 073010 (2003) If dominantly contributes to (for ) (for ) ( ) No signal of
https://www.katrin.kit.edu/213.php Main spectrometer of KATRIN experiment Transport through Leopoldshafen in Germany
Absolute Mass Scale I) : Neutrino mass eigenvalues or ( due to solar osc.) If experimentally Excluded ( sensitivity) Direct ( ): -decay ( sens.) Indirect (Cosmology): Not for a model but for all models belong to Group-I (e.g. ZB model, KNT model)
Majorana Mass and Combinations of Yukawa Ints. Higgs Triplet model e.g. Cheng-Li model e.g. Gustafsson-No-Rivera model e.g. Zee-Wolfenstein model e.g. Zee-Babu model
e.g. Ma model e.g. Aoki-Kanemura-Seto model New e.g. Krauss-Nasri-Trodden model
For Dirac neutrino masses (1) Lepton Number To forbid S. Kanemura, K. Sakurai, HS, PLB758, 465 (2016)
For Dirac neutrino masses (2) S. Kanemura, K. Sakurai, HS, PLB758, 465 (2016)